Generalize pawn movements: cleaner and smaller code
[vchess.git] / client / src / base_rules.js
1 // (Orthodox) Chess rules are defined in ChessRules class.
2 // Variants generally inherit from it, and modify some parts.
3
4 import { ArrayFun } from "@/utils/array";
5 import { randInt, shuffle } from "@/utils/alea";
6
7 // class "PiPo": Piece + Position
8 export const PiPo = class PiPo {
9 // o: {piece[p], color[c], posX[x], posY[y]}
10 constructor(o) {
11 this.p = o.p;
12 this.c = o.c;
13 this.x = o.x;
14 this.y = o.y;
15 }
16 };
17
18 export const Move = class Move {
19 // o: {appear, vanish, [start,] [end,]}
20 // appear,vanish = arrays of PiPo
21 // start,end = coordinates to apply to trigger move visually (think castle)
22 constructor(o) {
23 this.appear = o.appear;
24 this.vanish = o.vanish;
25 this.start = o.start ? o.start : { x: o.vanish[0].x, y: o.vanish[0].y };
26 this.end = o.end ? o.end : { x: o.appear[0].x, y: o.appear[0].y };
27 }
28 };
29
30 // NOTE: x coords = top to bottom; y = left to right (from white player perspective)
31 export const ChessRules = class ChessRules {
32 //////////////
33 // MISC UTILS
34
35 // Some variants don't have flags:
36 static get HasFlags() {
37 return true;
38 }
39
40 // Or castle
41 static get HasCastle() {
42 return V.HasFlags;
43 }
44
45 // Pawns specifications
46 static get PawnSpecs() {
47 return {
48 directions: { 'w': -1, 'b': 1 },
49 twoSquares: true,
50 promotions: [V.ROOK, V.KNIGHT, V.BISHOP, V.QUEEN],
51 canCapture: true,
52 captureBackward: false,
53 bidirectional: false
54 };
55 }
56
57 // En-passant captures need a stack of squares:
58 static get HasEnpassant() {
59 return true;
60 }
61
62 // Some variants cannot have analyse mode
63 static get CanAnalyze() {
64 return true;
65 }
66 // Patch: issues with javascript OOP, objects can't access static fields.
67 get canAnalyze() {
68 return V.CanAnalyze;
69 }
70
71 // Some variants show incomplete information,
72 // and thus show only a partial moves list or no list at all.
73 static get ShowMoves() {
74 return "all";
75 }
76 get showMoves() {
77 return V.ShowMoves;
78 }
79
80 // Some variants always show the same orientation
81 static get CanFlip() {
82 return true;
83 }
84 get canFlip() {
85 return V.CanFlip;
86 }
87
88 static get IMAGE_EXTENSION() {
89 // All pieces should be in the SVG format
90 return ".svg";
91 }
92
93 // Turn "wb" into "B" (for FEN)
94 static board2fen(b) {
95 return b[0] == "w" ? b[1].toUpperCase() : b[1];
96 }
97
98 // Turn "p" into "bp" (for board)
99 static fen2board(f) {
100 return f.charCodeAt() <= 90 ? "w" + f.toLowerCase() : "b" + f;
101 }
102
103 // Check if FEN describes a board situation correctly
104 static IsGoodFen(fen) {
105 const fenParsed = V.ParseFen(fen);
106 // 1) Check position
107 if (!V.IsGoodPosition(fenParsed.position)) return false;
108 // 2) Check turn
109 if (!fenParsed.turn || !V.IsGoodTurn(fenParsed.turn)) return false;
110 // 3) Check moves count
111 if (!fenParsed.movesCount || !(parseInt(fenParsed.movesCount) >= 0))
112 return false;
113 // 4) Check flags
114 if (V.HasFlags && (!fenParsed.flags || !V.IsGoodFlags(fenParsed.flags)))
115 return false;
116 // 5) Check enpassant
117 if (
118 V.HasEnpassant &&
119 (!fenParsed.enpassant || !V.IsGoodEnpassant(fenParsed.enpassant))
120 ) {
121 return false;
122 }
123 return true;
124 }
125
126 // Is position part of the FEN a priori correct?
127 static IsGoodPosition(position) {
128 if (position.length == 0) return false;
129 const rows = position.split("/");
130 if (rows.length != V.size.x) return false;
131 let kings = {};
132 for (let row of rows) {
133 let sumElts = 0;
134 for (let i = 0; i < row.length; i++) {
135 if (['K','k'].includes(row[i]))
136 kings[row[i]] = true;
137 if (V.PIECES.includes(row[i].toLowerCase())) sumElts++;
138 else {
139 const num = parseInt(row[i]);
140 if (isNaN(num)) return false;
141 sumElts += num;
142 }
143 }
144 if (sumElts != V.size.y) return false;
145 }
146 // Both kings should be on board:
147 if (Object.keys(kings).length != 2)
148 return false;
149 return true;
150 }
151
152 // For FEN checking
153 static IsGoodTurn(turn) {
154 return ["w", "b"].includes(turn);
155 }
156
157 // For FEN checking
158 static IsGoodFlags(flags) {
159 // NOTE: a little too permissive to work with more variants
160 return !!flags.match(/^[a-z]{4,4}$/);
161 }
162
163 static IsGoodEnpassant(enpassant) {
164 if (enpassant != "-") {
165 const ep = V.SquareToCoords(enpassant);
166 if (isNaN(ep.x) || !V.OnBoard(ep)) return false;
167 }
168 return true;
169 }
170
171 // 3 --> d (column number to letter)
172 static CoordToColumn(colnum) {
173 return String.fromCharCode(97 + colnum);
174 }
175
176 // d --> 3 (column letter to number)
177 static ColumnToCoord(column) {
178 return column.charCodeAt(0) - 97;
179 }
180
181 // a4 --> {x:3,y:0}
182 static SquareToCoords(sq) {
183 return {
184 // NOTE: column is always one char => max 26 columns
185 // row is counted from black side => subtraction
186 x: V.size.x - parseInt(sq.substr(1)),
187 y: sq[0].charCodeAt() - 97
188 };
189 }
190
191 // {x:0,y:4} --> e8
192 static CoordsToSquare(coords) {
193 return V.CoordToColumn(coords.y) + (V.size.x - coords.x);
194 }
195
196 // Path to pieces
197 getPpath(b) {
198 return b; //usual pieces in pieces/ folder
199 }
200
201 // Path to promotion pieces (usually the same)
202 getPPpath(b) {
203 return this.getPpath(b);
204 }
205
206 // Aggregates flags into one object
207 aggregateFlags() {
208 return this.castleFlags;
209 }
210
211 // Reverse operation
212 disaggregateFlags(flags) {
213 this.castleFlags = flags;
214 }
215
216 // En-passant square, if any
217 getEpSquare(moveOrSquare) {
218 if (!moveOrSquare) return undefined;
219 if (typeof moveOrSquare === "string") {
220 const square = moveOrSquare;
221 if (square == "-") return undefined;
222 return V.SquareToCoords(square);
223 }
224 // Argument is a move:
225 const move = moveOrSquare;
226 const s = move.start,
227 e = move.end;
228 if (
229 Math.abs(s.x - e.x) == 2 &&
230 s.y == e.y &&
231 move.appear[0].p == V.PAWN
232 ) {
233 return {
234 x: (s.x + e.x) / 2,
235 y: s.y
236 };
237 }
238 return undefined; //default
239 }
240
241 // Can thing on square1 take thing on square2
242 canTake([x1, y1], [x2, y2]) {
243 return this.getColor(x1, y1) !== this.getColor(x2, y2);
244 }
245
246 // Is (x,y) on the chessboard?
247 static OnBoard(x, y) {
248 return x >= 0 && x < V.size.x && y >= 0 && y < V.size.y;
249 }
250
251 // Used in interface: 'side' arg == player color
252 canIplay(side, [x, y]) {
253 return this.turn == side && this.getColor(x, y) == side;
254 }
255
256 // On which squares is color under check ? (for interface)
257 getCheckSquares(color) {
258 return (
259 this.underCheck(color)
260 ? [JSON.parse(JSON.stringify(this.kingPos[color]))] //need to duplicate!
261 : []
262 );
263 }
264
265 /////////////
266 // FEN UTILS
267
268 // Setup the initial random (asymmetric) position
269 static GenRandInitFen(randomness) {
270 if (randomness == 0)
271 // Deterministic:
272 return "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w 0 ahah -";
273
274 let pieces = { w: new Array(8), b: new Array(8) };
275 let flags = "";
276 // Shuffle pieces on first (and last rank if randomness == 2)
277 for (let c of ["w", "b"]) {
278 if (c == 'b' && randomness == 1) {
279 pieces['b'] = pieces['w'];
280 flags += flags;
281 break;
282 }
283
284 let positions = ArrayFun.range(8);
285
286 // Get random squares for bishops
287 let randIndex = 2 * randInt(4);
288 const bishop1Pos = positions[randIndex];
289 // The second bishop must be on a square of different color
290 let randIndex_tmp = 2 * randInt(4) + 1;
291 const bishop2Pos = positions[randIndex_tmp];
292 // Remove chosen squares
293 positions.splice(Math.max(randIndex, randIndex_tmp), 1);
294 positions.splice(Math.min(randIndex, randIndex_tmp), 1);
295
296 // Get random squares for knights
297 randIndex = randInt(6);
298 const knight1Pos = positions[randIndex];
299 positions.splice(randIndex, 1);
300 randIndex = randInt(5);
301 const knight2Pos = positions[randIndex];
302 positions.splice(randIndex, 1);
303
304 // Get random square for queen
305 randIndex = randInt(4);
306 const queenPos = positions[randIndex];
307 positions.splice(randIndex, 1);
308
309 // Rooks and king positions are now fixed,
310 // because of the ordering rook-king-rook
311 const rook1Pos = positions[0];
312 const kingPos = positions[1];
313 const rook2Pos = positions[2];
314
315 // Finally put the shuffled pieces in the board array
316 pieces[c][rook1Pos] = "r";
317 pieces[c][knight1Pos] = "n";
318 pieces[c][bishop1Pos] = "b";
319 pieces[c][queenPos] = "q";
320 pieces[c][kingPos] = "k";
321 pieces[c][bishop2Pos] = "b";
322 pieces[c][knight2Pos] = "n";
323 pieces[c][rook2Pos] = "r";
324 flags += V.CoordToColumn(rook1Pos) + V.CoordToColumn(rook2Pos);
325 }
326 // Add turn + flags + enpassant
327 return (
328 pieces["b"].join("") +
329 "/pppppppp/8/8/8/8/PPPPPPPP/" +
330 pieces["w"].join("").toUpperCase() +
331 " w 0 " + flags + " -"
332 );
333 }
334
335 // "Parse" FEN: just return untransformed string data
336 static ParseFen(fen) {
337 const fenParts = fen.split(" ");
338 let res = {
339 position: fenParts[0],
340 turn: fenParts[1],
341 movesCount: fenParts[2]
342 };
343 let nextIdx = 3;
344 if (V.HasFlags) Object.assign(res, { flags: fenParts[nextIdx++] });
345 if (V.HasEnpassant) Object.assign(res, { enpassant: fenParts[nextIdx] });
346 return res;
347 }
348
349 // Return current fen (game state)
350 getFen() {
351 return (
352 this.getBaseFen() + " " +
353 this.getTurnFen() + " " +
354 this.movesCount +
355 (V.HasFlags ? " " + this.getFlagsFen() : "") +
356 (V.HasEnpassant ? " " + this.getEnpassantFen() : "")
357 );
358 }
359
360 getFenForRepeat() {
361 // Omit movesCount, only variable allowed to differ
362 return (
363 this.getBaseFen() + "_" +
364 this.getTurnFen() +
365 (V.HasFlags ? "_" + this.getFlagsFen() : "") +
366 (V.HasEnpassant ? "_" + this.getEnpassantFen() : "")
367 );
368 }
369
370 // Position part of the FEN string
371 getBaseFen() {
372 let position = "";
373 for (let i = 0; i < V.size.x; i++) {
374 let emptyCount = 0;
375 for (let j = 0; j < V.size.y; j++) {
376 if (this.board[i][j] == V.EMPTY) emptyCount++;
377 else {
378 if (emptyCount > 0) {
379 // Add empty squares in-between
380 position += emptyCount;
381 emptyCount = 0;
382 }
383 position += V.board2fen(this.board[i][j]);
384 }
385 }
386 if (emptyCount > 0) {
387 // "Flush remainder"
388 position += emptyCount;
389 }
390 if (i < V.size.x - 1) position += "/"; //separate rows
391 }
392 return position;
393 }
394
395 getTurnFen() {
396 return this.turn;
397 }
398
399 // Flags part of the FEN string
400 getFlagsFen() {
401 let flags = "";
402 // Castling flags
403 for (let c of ["w", "b"])
404 flags += this.castleFlags[c].map(V.CoordToColumn).join("");
405 return flags;
406 }
407
408 // Enpassant part of the FEN string
409 getEnpassantFen() {
410 const L = this.epSquares.length;
411 if (!this.epSquares[L - 1]) return "-"; //no en-passant
412 return V.CoordsToSquare(this.epSquares[L - 1]);
413 }
414
415 // Turn position fen into double array ["wb","wp","bk",...]
416 static GetBoard(position) {
417 const rows = position.split("/");
418 let board = ArrayFun.init(V.size.x, V.size.y, "");
419 for (let i = 0; i < rows.length; i++) {
420 let j = 0;
421 for (let indexInRow = 0; indexInRow < rows[i].length; indexInRow++) {
422 const character = rows[i][indexInRow];
423 const num = parseInt(character);
424 // If num is a number, just shift j:
425 if (!isNaN(num)) j += num;
426 // Else: something at position i,j
427 else board[i][j++] = V.fen2board(character);
428 }
429 }
430 return board;
431 }
432
433 // Extract (relevant) flags from fen
434 setFlags(fenflags) {
435 // white a-castle, h-castle, black a-castle, h-castle
436 this.castleFlags = { w: [true, true], b: [true, true] };
437 for (let i = 0; i < 4; i++) {
438 this.castleFlags[i < 2 ? "w" : "b"][i % 2] =
439 V.ColumnToCoord(fenflags.charAt(i));
440 }
441 }
442
443 //////////////////
444 // INITIALIZATION
445
446 // Fen string fully describes the game state
447 constructor(fen) {
448 if (!fen)
449 // In printDiagram() fen isn't supply because only getPpath() is used
450 // TODO: find a better solution!
451 return;
452 const fenParsed = V.ParseFen(fen);
453 this.board = V.GetBoard(fenParsed.position);
454 this.turn = fenParsed.turn[0]; //[0] to work with MarseilleRules
455 this.movesCount = parseInt(fenParsed.movesCount);
456 this.setOtherVariables(fen);
457 }
458
459 // Scan board for kings positions
460 scanKings(fen) {
461 this.INIT_COL_KING = { w: -1, b: -1 };
462 this.kingPos = { w: [-1, -1], b: [-1, -1] }; //squares of white and black king
463 const fenRows = V.ParseFen(fen).position.split("/");
464 const startRow = { 'w': V.size.x - 1, 'b': 0 };
465 for (let i = 0; i < fenRows.length; i++) {
466 let k = 0; //column index on board
467 for (let j = 0; j < fenRows[i].length; j++) {
468 switch (fenRows[i].charAt(j)) {
469 case "k":
470 this.kingPos["b"] = [i, k];
471 this.INIT_COL_KING["b"] = k;
472 break;
473 case "K":
474 this.kingPos["w"] = [i, k];
475 this.INIT_COL_KING["w"] = k;
476 break;
477 default: {
478 const num = parseInt(fenRows[i].charAt(j));
479 if (!isNaN(num)) k += num - 1;
480 }
481 }
482 k++;
483 }
484 }
485 }
486
487 // Some additional variables from FEN (variant dependant)
488 setOtherVariables(fen) {
489 // Set flags and enpassant:
490 const parsedFen = V.ParseFen(fen);
491 if (V.HasFlags) this.setFlags(parsedFen.flags);
492 if (V.HasEnpassant) {
493 const epSq =
494 parsedFen.enpassant != "-"
495 ? this.getEpSquare(parsedFen.enpassant)
496 : undefined;
497 this.epSquares = [epSq];
498 }
499 // Search for kings positions:
500 this.scanKings(fen);
501 }
502
503 /////////////////////
504 // GETTERS & SETTERS
505
506 static get size() {
507 return { x: 8, y: 8 };
508 }
509
510 // Color of thing on square (i,j). 'undefined' if square is empty
511 getColor(i, j) {
512 return this.board[i][j].charAt(0);
513 }
514
515 // Piece type on square (i,j). 'undefined' if square is empty
516 getPiece(i, j) {
517 return this.board[i][j].charAt(1);
518 }
519
520 // Get opponent color
521 static GetOppCol(color) {
522 return color == "w" ? "b" : "w";
523 }
524
525 // Pieces codes (for a clearer code)
526 static get PAWN() {
527 return "p";
528 }
529 static get ROOK() {
530 return "r";
531 }
532 static get KNIGHT() {
533 return "n";
534 }
535 static get BISHOP() {
536 return "b";
537 }
538 static get QUEEN() {
539 return "q";
540 }
541 static get KING() {
542 return "k";
543 }
544
545 // For FEN checking:
546 static get PIECES() {
547 return [V.PAWN, V.ROOK, V.KNIGHT, V.BISHOP, V.QUEEN, V.KING];
548 }
549
550 // Empty square
551 static get EMPTY() {
552 return "";
553 }
554
555 // Some pieces movements
556 static get steps() {
557 return {
558 r: [
559 [-1, 0],
560 [1, 0],
561 [0, -1],
562 [0, 1]
563 ],
564 n: [
565 [-1, -2],
566 [-1, 2],
567 [1, -2],
568 [1, 2],
569 [-2, -1],
570 [-2, 1],
571 [2, -1],
572 [2, 1]
573 ],
574 b: [
575 [-1, -1],
576 [-1, 1],
577 [1, -1],
578 [1, 1]
579 ]
580 };
581 }
582
583 ////////////////////
584 // MOVES GENERATION
585
586 // All possible moves from selected square
587 getPotentialMovesFrom([x, y]) {
588 switch (this.getPiece(x, y)) {
589 case V.PAWN:
590 return this.getPotentialPawnMoves([x, y]);
591 case V.ROOK:
592 return this.getPotentialRookMoves([x, y]);
593 case V.KNIGHT:
594 return this.getPotentialKnightMoves([x, y]);
595 case V.BISHOP:
596 return this.getPotentialBishopMoves([x, y]);
597 case V.QUEEN:
598 return this.getPotentialQueenMoves([x, y]);
599 case V.KING:
600 return this.getPotentialKingMoves([x, y]);
601 }
602 return []; //never reached
603 }
604
605 // Build a regular move from its initial and destination squares.
606 // tr: transformation
607 getBasicMove([sx, sy], [ex, ey], tr) {
608 let mv = new Move({
609 appear: [
610 new PiPo({
611 x: ex,
612 y: ey,
613 c: tr ? tr.c : this.getColor(sx, sy),
614 p: tr ? tr.p : this.getPiece(sx, sy)
615 })
616 ],
617 vanish: [
618 new PiPo({
619 x: sx,
620 y: sy,
621 c: this.getColor(sx, sy),
622 p: this.getPiece(sx, sy)
623 })
624 ]
625 });
626
627 // The opponent piece disappears if we take it
628 if (this.board[ex][ey] != V.EMPTY) {
629 mv.vanish.push(
630 new PiPo({
631 x: ex,
632 y: ey,
633 c: this.getColor(ex, ey),
634 p: this.getPiece(ex, ey)
635 })
636 );
637 }
638
639 return mv;
640 }
641
642 // Generic method to find possible moves of non-pawn pieces:
643 // "sliding or jumping"
644 getSlideNJumpMoves([x, y], steps, oneStep) {
645 let moves = [];
646 outerLoop: for (let step of steps) {
647 let i = x + step[0];
648 let j = y + step[1];
649 while (V.OnBoard(i, j) && this.board[i][j] == V.EMPTY) {
650 moves.push(this.getBasicMove([x, y], [i, j]));
651 if (oneStep) continue outerLoop;
652 i += step[0];
653 j += step[1];
654 }
655 if (V.OnBoard(i, j) && this.canTake([x, y], [i, j]))
656 moves.push(this.getBasicMove([x, y], [i, j]));
657 }
658 return moves;
659 }
660
661 // Special case of en-passant captures: treated separately
662 getEnpassantCaptures([x, y], shiftX) {
663 const Lep = this.epSquares.length;
664 const epSquare = this.epSquares[Lep - 1]; //always at least one element
665 let enpassantMove = null;
666 if (
667 !!epSquare &&
668 epSquare.x == x + shiftX &&
669 Math.abs(epSquare.y - y) == 1
670 ) {
671 enpassantMove = this.getBasicMove([x, y], [epSquare.x, epSquare.y]);
672 enpassantMove.vanish.push({
673 x: x,
674 y: epSquare.y,
675 p: "p",
676 c: this.getColor(x, epSquare.y)
677 });
678 }
679 return !!enpassantMove ? [enpassantMove] : [];
680 }
681
682 // What are the pawn moves from square x,y ?
683 getPotentialPawnMoves([x, y], promotions) {
684 const color = this.turn;
685 const [sizeX, sizeY] = [V.size.x, V.size.y];
686 const pawnShiftX = V.PawnSpecs.directions[color];
687 const firstRank = color == "w" ? sizeX - 1 : 0;
688 const startRank = color == "w" ? sizeX - 2 : 1;
689 const lastRank = color == "w" ? 0 : sizeX - 1;
690
691 // Consider all potential promotions:
692 const addMoves = ([x1, y1], [x2, y2], moves) => {
693 let finalPieces = [V.PAWN];
694 if (x2 == lastRank) {
695 // promotions arg: special override for Hiddenqueen variant
696 if (!!promotions) finalPieces = promotions;
697 else if (!!V.PawnSpecs.promotions)
698 finalPieces = V.PawnSpecs.promotions;
699 }
700 for (let piece of finalPieces) {
701 moves.push(
702 this.getBasicMove([x1, y1], [x2, y2], {
703 c: color,
704 p: piece
705 })
706 );
707 }
708 }
709
710 // Pawn movements in shiftX direction:
711 const getPawnMoves = (shiftX) => {
712 let moves = [];
713 // NOTE: next condition is generally true (no pawn on last rank)
714 if (x + shiftX >= 0 && x + shiftX < sizeX) {
715 if (this.board[x + shiftX][y] == V.EMPTY) {
716 // One square forward
717 addMoves([x, y], [x + shiftX, y], moves);
718 // Next condition because pawns on 1st rank can generally jump
719 if (
720 V.PawnSpecs.twoSquares &&
721 [startRank, firstRank].includes(x) &&
722 this.board[x + 2 * shiftX][y] == V.EMPTY
723 ) {
724 // Two squares jump
725 moves.push(this.getBasicMove([x, y], [x + 2 * shiftX, y]));
726 }
727 }
728 // Captures
729 if (V.PawnSpecs.canCapture) {
730 for (let shiftY of [-1, 1]) {
731 if (
732 y + shiftY >= 0 &&
733 y + shiftY < sizeY
734 ) {
735 if (
736 this.board[x + shiftX][y + shiftY] != V.EMPTY &&
737 this.canTake([x, y], [x + shiftX, y + shiftY])
738 ) {
739 addMoves([x, y], [x + shiftX, y + shiftY], moves);
740 }
741 if (
742 V.PawnSpecs.captureBackward &&
743 x - shiftX >= 0 && x - shiftX < V.size.x &&
744 this.board[x - shiftX][y + shiftY] != V.EMPTY &&
745 this.canTake([x, y], [x - shiftX, y + shiftY])
746 ) {
747 addMoves([x, y], [x + shiftX, y + shiftY], moves);
748 }
749 }
750 }
751 }
752 }
753 return moves;
754 }
755
756 let pMoves = getPawnMoves(pawnShiftX);
757 if (V.PawnSpecs.bidirectional)
758 pMoves = pMoves.concat(getPawnMoves(-pawnShiftX));
759
760 if (V.HasEnpassant) {
761 // NOTE: backward en-passant captures are not considered
762 // because no rules define them (for now).
763 Array.prototype.push.apply(
764 pMoves,
765 this.getEnpassantCaptures([x, y], pawnShiftX)
766 );
767 }
768
769 return pMoves;
770 }
771
772 // What are the rook moves from square x,y ?
773 getPotentialRookMoves(sq) {
774 return this.getSlideNJumpMoves(sq, V.steps[V.ROOK]);
775 }
776
777 // What are the knight moves from square x,y ?
778 getPotentialKnightMoves(sq) {
779 return this.getSlideNJumpMoves(sq, V.steps[V.KNIGHT], "oneStep");
780 }
781
782 // What are the bishop moves from square x,y ?
783 getPotentialBishopMoves(sq) {
784 return this.getSlideNJumpMoves(sq, V.steps[V.BISHOP]);
785 }
786
787 // What are the queen moves from square x,y ?
788 getPotentialQueenMoves(sq) {
789 return this.getSlideNJumpMoves(
790 sq,
791 V.steps[V.ROOK].concat(V.steps[V.BISHOP])
792 );
793 }
794
795 // What are the king moves from square x,y ?
796 getPotentialKingMoves(sq) {
797 // Initialize with normal moves
798 let moves = this.getSlideNJumpMoves(
799 sq,
800 V.steps[V.ROOK].concat(V.steps[V.BISHOP]),
801 "oneStep"
802 );
803 if (V.HasCastle) moves = moves.concat(this.getCastleMoves(sq));
804 return moves;
805 }
806
807 getCastleMoves([x, y]) {
808 const c = this.getColor(x, y);
809 if (x != (c == "w" ? V.size.x - 1 : 0) || y != this.INIT_COL_KING[c])
810 return []; //x isn't first rank, or king has moved (shortcut)
811
812 // Castling ?
813 const oppCol = V.GetOppCol(c);
814 let moves = [];
815 let i = 0;
816 // King, then rook:
817 const finalSquares = [
818 [2, 3],
819 [V.size.y - 2, V.size.y - 3]
820 ];
821 castlingCheck: for (
822 let castleSide = 0;
823 castleSide < 2;
824 castleSide++ //large, then small
825 ) {
826 if (this.castleFlags[c][castleSide] >= V.size.y) continue;
827 // If this code is reached, rooks and king are on initial position
828
829 const rookPos = this.castleFlags[c][castleSide];
830 if (this.getColor(x, rookPos) != c)
831 // Rook is here but changed color (see Benedict)
832 continue;
833
834 // Nothing on the path of the king ? (and no checks)
835 const finDist = finalSquares[castleSide][0] - y;
836 let step = finDist / Math.max(1, Math.abs(finDist));
837 i = y;
838 do {
839 if (
840 this.isAttacked([x, i], oppCol) ||
841 (this.board[x][i] != V.EMPTY &&
842 // NOTE: next check is enough, because of chessboard constraints
843 (this.getColor(x, i) != c ||
844 ![V.KING, V.ROOK].includes(this.getPiece(x, i))))
845 ) {
846 continue castlingCheck;
847 }
848 i += step;
849 } while (i != finalSquares[castleSide][0]);
850
851 // Nothing on the path to the rook?
852 step = castleSide == 0 ? -1 : 1;
853 for (i = y + step; i != rookPos; i += step) {
854 if (this.board[x][i] != V.EMPTY) continue castlingCheck;
855 }
856
857 // Nothing on final squares, except maybe king and castling rook?
858 for (i = 0; i < 2; i++) {
859 if (
860 this.board[x][finalSquares[castleSide][i]] != V.EMPTY &&
861 this.getPiece(x, finalSquares[castleSide][i]) != V.KING &&
862 finalSquares[castleSide][i] != rookPos
863 ) {
864 continue castlingCheck;
865 }
866 }
867
868 // If this code is reached, castle is valid
869 moves.push(
870 new Move({
871 appear: [
872 new PiPo({ x: x, y: finalSquares[castleSide][0], p: V.KING, c: c }),
873 new PiPo({ x: x, y: finalSquares[castleSide][1], p: V.ROOK, c: c })
874 ],
875 vanish: [
876 new PiPo({ x: x, y: y, p: V.KING, c: c }),
877 new PiPo({ x: x, y: rookPos, p: V.ROOK, c: c })
878 ],
879 end:
880 Math.abs(y - rookPos) <= 2
881 ? { x: x, y: rookPos }
882 : { x: x, y: y + 2 * (castleSide == 0 ? -1 : 1) }
883 })
884 );
885 }
886
887 return moves;
888 }
889
890 ////////////////////
891 // MOVES VALIDATION
892
893 // For the interface: possible moves for the current turn from square sq
894 getPossibleMovesFrom(sq) {
895 return this.filterValid(this.getPotentialMovesFrom(sq));
896 }
897
898 // TODO: promotions (into R,B,N,Q) should be filtered only once
899 filterValid(moves) {
900 if (moves.length == 0) return [];
901 const color = this.turn;
902 return moves.filter(m => {
903 this.play(m);
904 const res = !this.underCheck(color);
905 this.undo(m);
906 return res;
907 });
908 }
909
910 // Search for all valid moves considering current turn
911 // (for engine and game end)
912 getAllValidMoves() {
913 const color = this.turn;
914 let potentialMoves = [];
915 for (let i = 0; i < V.size.x; i++) {
916 for (let j = 0; j < V.size.y; j++) {
917 if (this.getColor(i, j) == color) {
918 Array.prototype.push.apply(
919 potentialMoves,
920 this.getPotentialMovesFrom([i, j])
921 );
922 }
923 }
924 }
925 return this.filterValid(potentialMoves);
926 }
927
928 // Stop at the first move found
929 atLeastOneMove() {
930 const color = this.turn;
931 for (let i = 0; i < V.size.x; i++) {
932 for (let j = 0; j < V.size.y; j++) {
933 if (this.getColor(i, j) == color) {
934 const moves = this.getPotentialMovesFrom([i, j]);
935 if (moves.length > 0) {
936 for (let k = 0; k < moves.length; k++) {
937 if (this.filterValid([moves[k]]).length > 0) return true;
938 }
939 }
940 }
941 }
942 }
943 return false;
944 }
945
946 // Check if pieces of given color are attacking (king) on square x,y
947 isAttacked(sq, color) {
948 return (
949 this.isAttackedByPawn(sq, color) ||
950 this.isAttackedByRook(sq, color) ||
951 this.isAttackedByKnight(sq, color) ||
952 this.isAttackedByBishop(sq, color) ||
953 this.isAttackedByQueen(sq, color) ||
954 this.isAttackedByKing(sq, color)
955 );
956 }
957
958 // Generic method for non-pawn pieces ("sliding or jumping"):
959 // is x,y attacked by a piece of given color ?
960 isAttackedBySlideNJump([x, y], color, piece, steps, oneStep) {
961 for (let step of steps) {
962 let rx = x + step[0],
963 ry = y + step[1];
964 while (V.OnBoard(rx, ry) && this.board[rx][ry] == V.EMPTY && !oneStep) {
965 rx += step[0];
966 ry += step[1];
967 }
968 if (
969 V.OnBoard(rx, ry) &&
970 this.getPiece(rx, ry) == piece &&
971 this.getColor(rx, ry) == color
972 ) {
973 return true;
974 }
975 }
976 return false;
977 }
978
979 // Is square x,y attacked by 'color' pawns ?
980 isAttackedByPawn([x, y], color) {
981 const pawnShift = (color == "w" ? 1 : -1);
982 if (x + pawnShift >= 0 && x + pawnShift < V.size.x) {
983 for (let i of [-1, 1]) {
984 if (
985 y + i >= 0 &&
986 y + i < V.size.y &&
987 this.getPiece(x + pawnShift, y + i) == V.PAWN &&
988 this.getColor(x + pawnShift, y + i) == color
989 ) {
990 return true;
991 }
992 }
993 }
994 return false;
995 }
996
997 // Is square x,y attacked by 'color' rooks ?
998 isAttackedByRook(sq, color) {
999 return this.isAttackedBySlideNJump(sq, color, V.ROOK, V.steps[V.ROOK]);
1000 }
1001
1002 // Is square x,y attacked by 'color' knights ?
1003 isAttackedByKnight(sq, color) {
1004 return this.isAttackedBySlideNJump(
1005 sq,
1006 color,
1007 V.KNIGHT,
1008 V.steps[V.KNIGHT],
1009 "oneStep"
1010 );
1011 }
1012
1013 // Is square x,y attacked by 'color' bishops ?
1014 isAttackedByBishop(sq, color) {
1015 return this.isAttackedBySlideNJump(sq, color, V.BISHOP, V.steps[V.BISHOP]);
1016 }
1017
1018 // Is square x,y attacked by 'color' queens ?
1019 isAttackedByQueen(sq, color) {
1020 return this.isAttackedBySlideNJump(
1021 sq,
1022 color,
1023 V.QUEEN,
1024 V.steps[V.ROOK].concat(V.steps[V.BISHOP])
1025 );
1026 }
1027
1028 // Is square x,y attacked by 'color' king(s) ?
1029 isAttackedByKing(sq, color) {
1030 return this.isAttackedBySlideNJump(
1031 sq,
1032 color,
1033 V.KING,
1034 V.steps[V.ROOK].concat(V.steps[V.BISHOP]),
1035 "oneStep"
1036 );
1037 }
1038
1039 // Is color under check after his move ?
1040 underCheck(color) {
1041 return this.isAttacked(this.kingPos[color], [V.GetOppCol(color)]);
1042 }
1043
1044 /////////////////
1045 // MOVES PLAYING
1046
1047 // Apply a move on board
1048 static PlayOnBoard(board, move) {
1049 for (let psq of move.vanish) board[psq.x][psq.y] = V.EMPTY;
1050 for (let psq of move.appear) board[psq.x][psq.y] = psq.c + psq.p;
1051 }
1052 // Un-apply the played move
1053 static UndoOnBoard(board, move) {
1054 for (let psq of move.appear) board[psq.x][psq.y] = V.EMPTY;
1055 for (let psq of move.vanish) board[psq.x][psq.y] = psq.c + psq.p;
1056 }
1057
1058 prePlay() {}
1059
1060 play(move) {
1061 // DEBUG:
1062 // if (!this.states) this.states = [];
1063 // const stateFen = this.getBaseFen() + this.getTurnFen();// + this.getFlagsFen();
1064 // this.states.push(stateFen);
1065
1066 this.prePlay(move);
1067 if (V.HasFlags) move.flags = JSON.stringify(this.aggregateFlags()); //save flags (for undo)
1068 if (V.HasEnpassant) this.epSquares.push(this.getEpSquare(move));
1069 V.PlayOnBoard(this.board, move);
1070 this.turn = V.GetOppCol(this.turn);
1071 this.movesCount++;
1072 this.postPlay(move);
1073 }
1074
1075 // After move is played, update variables + flags
1076 postPlay(move) {
1077 const c = V.GetOppCol(this.turn);
1078 let piece = undefined;
1079 if (move.vanish.length >= 1)
1080 // Usual case, something is moved
1081 piece = move.vanish[0].p;
1082 else
1083 // Crazyhouse-like variants
1084 piece = move.appear[0].p;
1085 const firstRank = c == "w" ? V.size.x - 1 : 0;
1086
1087 // Update king position + flags
1088 if (piece == V.KING && move.appear.length > 0) {
1089 this.kingPos[c][0] = move.appear[0].x;
1090 this.kingPos[c][1] = move.appear[0].y;
1091 if (V.HasCastle) this.castleFlags[c] = [V.size.y, V.size.y];
1092 return;
1093 }
1094 if (V.HasCastle) {
1095 // Update castling flags if rooks are moved
1096 const oppCol = V.GetOppCol(c);
1097 const oppFirstRank = V.size.x - 1 - firstRank;
1098 if (
1099 move.start.x == firstRank && //our rook moves?
1100 this.castleFlags[c].includes(move.start.y)
1101 ) {
1102 const flagIdx = (move.start.y == this.castleFlags[c][0] ? 0 : 1);
1103 this.castleFlags[c][flagIdx] = V.size.y;
1104 } else if (
1105 move.end.x == oppFirstRank && //we took opponent rook?
1106 this.castleFlags[oppCol].includes(move.end.y)
1107 ) {
1108 const flagIdx = (move.end.y == this.castleFlags[oppCol][0] ? 0 : 1);
1109 this.castleFlags[oppCol][flagIdx] = V.size.y;
1110 }
1111 }
1112 }
1113
1114 preUndo() {}
1115
1116 undo(move) {
1117 this.preUndo(move);
1118 if (V.HasEnpassant) this.epSquares.pop();
1119 if (V.HasFlags) this.disaggregateFlags(JSON.parse(move.flags));
1120 V.UndoOnBoard(this.board, move);
1121 this.turn = V.GetOppCol(this.turn);
1122 this.movesCount--;
1123 this.postUndo(move);
1124
1125 // DEBUG:
1126 // const stateFen = this.getBaseFen() + this.getTurnFen();// + this.getFlagsFen();
1127 // if (stateFen != this.states[this.states.length-1]) debugger;
1128 // this.states.pop();
1129 }
1130
1131 // After move is undo-ed *and flags resetted*, un-update other variables
1132 // TODO: more symmetry, by storing flags increment in move (?!)
1133 postUndo(move) {
1134 // (Potentially) Reset king position
1135 const c = this.getColor(move.start.x, move.start.y);
1136 if (this.getPiece(move.start.x, move.start.y) == V.KING)
1137 this.kingPos[c] = [move.start.x, move.start.y];
1138 }
1139
1140 ///////////////
1141 // END OF GAME
1142
1143 // What is the score ? (Interesting if game is over)
1144 getCurrentScore() {
1145 if (this.atLeastOneMove())
1146 return "*";
1147
1148 // Game over
1149 const color = this.turn;
1150 // No valid move: stalemate or checkmate?
1151 if (!this.isAttacked(this.kingPos[color], V.GetOppCol(color)))
1152 return "1/2";
1153 // OK, checkmate
1154 return (color == "w" ? "0-1" : "1-0");
1155 }
1156
1157 ///////////////
1158 // ENGINE PLAY
1159
1160 // Pieces values
1161 static get VALUES() {
1162 return {
1163 p: 1,
1164 r: 5,
1165 n: 3,
1166 b: 3,
1167 q: 9,
1168 k: 1000
1169 };
1170 }
1171
1172 // "Checkmate" (unreachable eval)
1173 static get INFINITY() {
1174 return 9999;
1175 }
1176
1177 // At this value or above, the game is over
1178 static get THRESHOLD_MATE() {
1179 return V.INFINITY;
1180 }
1181
1182 // Search depth: 2 for high branching factor, 4 for small (Loser chess, eg.)
1183 static get SEARCH_DEPTH() {
1184 return 3;
1185 }
1186
1187 getComputerMove() {
1188 const maxeval = V.INFINITY;
1189 const color = this.turn;
1190 let moves1 = this.getAllValidMoves();
1191
1192 if (moves1.length == 0)
1193 // TODO: this situation should not happen
1194 return null;
1195
1196 // Rank moves using a min-max at depth 2 (if search_depth >= 2!)
1197 for (let i = 0; i < moves1.length; i++) {
1198 this.play(moves1[i]);
1199 const score1 = this.getCurrentScore();
1200 if (score1 != "*") {
1201 moves1[i].eval =
1202 score1 == "1/2"
1203 ? 0
1204 : (score1 == "1-0" ? 1 : -1) * maxeval;
1205 }
1206 if (V.SEARCH_DEPTH == 1 || score1 != "*") {
1207 if (!moves1[i].eval) moves1[i].eval = this.evalPosition();
1208 this.undo(moves1[i]);
1209 continue;
1210 }
1211 // Initial self evaluation is very low: "I'm checkmated"
1212 moves1[i].eval = (color == "w" ? -1 : 1) * maxeval;
1213 // Initial enemy evaluation is very low too, for him
1214 let eval2 = (color == "w" ? 1 : -1) * maxeval;
1215 // Second half-move:
1216 let moves2 = this.getAllValidMoves();
1217 for (let j = 0; j < moves2.length; j++) {
1218 this.play(moves2[j]);
1219 const score2 = this.getCurrentScore();
1220 let evalPos = 0; //1/2 value
1221 switch (score2) {
1222 case "*":
1223 evalPos = this.evalPosition();
1224 break;
1225 case "1-0":
1226 evalPos = maxeval;
1227 break;
1228 case "0-1":
1229 evalPos = -maxeval;
1230 break;
1231 }
1232 if (
1233 (color == "w" && evalPos < eval2) ||
1234 (color == "b" && evalPos > eval2)
1235 ) {
1236 eval2 = evalPos;
1237 }
1238 this.undo(moves2[j]);
1239 }
1240 if (
1241 (color == "w" && eval2 > moves1[i].eval) ||
1242 (color == "b" && eval2 < moves1[i].eval)
1243 ) {
1244 moves1[i].eval = eval2;
1245 }
1246 this.undo(moves1[i]);
1247 }
1248 moves1.sort((a, b) => {
1249 return (color == "w" ? 1 : -1) * (b.eval - a.eval);
1250 });
1251 // console.log(moves1.map(m => { return [this.getNotation(m), m.eval]; }));
1252
1253 // Skip depth 3+ if we found a checkmate (or if we are checkmated in 1...)
1254 if (V.SEARCH_DEPTH >= 3 && Math.abs(moves1[0].eval) < V.THRESHOLD_MATE) {
1255 for (let i = 0; i < moves1.length; i++) {
1256 this.play(moves1[i]);
1257 // 0.1 * oldEval : heuristic to avoid some bad moves (not all...)
1258 moves1[i].eval =
1259 0.1 * moves1[i].eval +
1260 this.alphabeta(V.SEARCH_DEPTH - 1, -maxeval, maxeval);
1261 this.undo(moves1[i]);
1262 }
1263 moves1.sort((a, b) => {
1264 return (color == "w" ? 1 : -1) * (b.eval - a.eval);
1265 });
1266 }
1267
1268 let candidates = [0];
1269 for (let j = 1; j < moves1.length && moves1[j].eval == moves1[0].eval; j++)
1270 candidates.push(j);
1271 return moves1[candidates[randInt(candidates.length)]];
1272 }
1273
1274 alphabeta(depth, alpha, beta) {
1275 const maxeval = V.INFINITY;
1276 const color = this.turn;
1277 const score = this.getCurrentScore();
1278 if (score != "*")
1279 return score == "1/2" ? 0 : (score == "1-0" ? 1 : -1) * maxeval;
1280 if (depth == 0) return this.evalPosition();
1281 const moves = this.getAllValidMoves();
1282 let v = color == "w" ? -maxeval : maxeval;
1283 if (color == "w") {
1284 for (let i = 0; i < moves.length; i++) {
1285 this.play(moves[i]);
1286 v = Math.max(v, this.alphabeta(depth - 1, alpha, beta));
1287 this.undo(moves[i]);
1288 alpha = Math.max(alpha, v);
1289 if (alpha >= beta) break; //beta cutoff
1290 }
1291 }
1292 else {
1293 // color=="b"
1294 for (let i = 0; i < moves.length; i++) {
1295 this.play(moves[i]);
1296 v = Math.min(v, this.alphabeta(depth - 1, alpha, beta));
1297 this.undo(moves[i]);
1298 beta = Math.min(beta, v);
1299 if (alpha >= beta) break; //alpha cutoff
1300 }
1301 }
1302 return v;
1303 }
1304
1305 evalPosition() {
1306 let evaluation = 0;
1307 // Just count material for now
1308 for (let i = 0; i < V.size.x; i++) {
1309 for (let j = 0; j < V.size.y; j++) {
1310 if (this.board[i][j] != V.EMPTY) {
1311 const sign = this.getColor(i, j) == "w" ? 1 : -1;
1312 evaluation += sign * V.VALUES[this.getPiece(i, j)];
1313 }
1314 }
1315 }
1316 return evaluation;
1317 }
1318
1319 /////////////////////////
1320 // MOVES + GAME NOTATION
1321 /////////////////////////
1322
1323 // Context: just before move is played, turn hasn't changed
1324 // TODO: un-ambiguous notation (switch on piece type, check directions...)
1325 getNotation(move) {
1326 if (move.appear.length == 2 && move.appear[0].p == V.KING)
1327 // Castle
1328 return move.end.y < move.start.y ? "0-0-0" : "0-0";
1329
1330 // Translate final square
1331 const finalSquare = V.CoordsToSquare(move.end);
1332
1333 const piece = this.getPiece(move.start.x, move.start.y);
1334 if (piece == V.PAWN) {
1335 // Pawn move
1336 let notation = "";
1337 if (move.vanish.length > move.appear.length) {
1338 // Capture
1339 const startColumn = V.CoordToColumn(move.start.y);
1340 notation = startColumn + "x" + finalSquare;
1341 }
1342 else notation = finalSquare;
1343 if (move.appear.length > 0 && move.appear[0].p != V.PAWN)
1344 // Promotion
1345 notation += "=" + move.appear[0].p.toUpperCase();
1346 return notation;
1347 }
1348 // Piece movement
1349 return (
1350 piece.toUpperCase() +
1351 (move.vanish.length > move.appear.length ? "x" : "") +
1352 finalSquare
1353 );
1354 }
1355 };