de_serialize works. Variables names improved. Code beautified. TODO: clustering tests
[epclust.git] / epclust / R / clustering.R
index e27ea35..fce1b1c 100644 (file)
@@ -1,71 +1,73 @@
-oneIteration = function(..........)
+# Cluster one full task (nb_curves / ntasks series); only step 1
+clusteringTask = function(indices, getCoefs, K1, nb_series_per_chunk, ncores)
 {
-               cl_clust = parallel::makeCluster(ncores_clust)
-               parallel::clusterExport(cl_clust, .............., envir=........)
-               indices_clust = indices_task[[i]]
-               repeat
-               {
-                       nb_workers = max( 1, round( length(indices_clust) / nb_series_per_chunk ) )
-                       indices_workers = list()
-                       #indices[[i]] == (start_index,number_of_elements)
-                       for (i in 1:nb_workers)
-                       {
-                               upper_bound = ifelse( i<nb_workers,
-                                       min(nb_series_per_chunk*i,length(indices_clust)), length(indices_clust) )
-                               indices_workers[[i]] = indices_clust[(nb_series_per_chunk*(i-1)+1):upper_bound]
-                       }
-                       indices_clust = parallel::parSapply(cl, indices_workers, processChunk, K1, K2*(WER=="mix"))
-                       if ( (WER=="end" && length(indices_clust) == K1) ||
-                               (WER=="mix" && length(indices_clust) == K2) )
-                       {
-                               break
-                       }
-               }
-               parallel::stopCluster(cl_clust)
-               res_clust
-}
-
-processChunk = function(indices, K1, K2)
-{
-       #1) retrieve data (coeffs)
-       coeffs = getCoeffs(indices)
-       #2) cluster
-       cl = computeClusters(as.matrix(coeffs[,2:ncol(coeffs)]), K1)
-       #3) WER (optional)
-       if (K2 > 0)
+       cl = parallel::makeCluster(ncores)
+       repeat
        {
-               curves = computeSynchrones(cl)
-               dists = computeWerDists(curves)
-               cl = computeClusters(dists, K2)
+               nb_workers = max( 1, round( length(indices) / nb_series_per_chunk ) )
+               indices_workers = lapply(seq_len(nb_workers), function(i) {
+                       upper_bound = ifelse( i<nb_workers,
+                               min(nb_series_per_chunk*i,length(indices)), length(indices) )
+                       indices[(nb_series_per_chunk*(i-1)+1):upper_bound]
+               })
+               indices = unlist( parallel::parLapply(cl, indices_workers, function(inds)
+                       computeClusters1(getCoefs(inds), K1)) )
+               if (length(indices) == K1)
+                       break
        }
-       cl
+       parallel::stopCluster(cl)
+       indices #medoids
 }
 
-computeClusters = function(data, K)
+# Apply the clustering algorithm (PAM) on a coeffs or distances matrix
+computeClusters1 = function(coefs, K1)
+       indices[ cluster::pam(coefs, K1, diss=FALSE)$id.med ]
+
+# Cluster a chunk of series inside one task (~max nb_series_per_chunk)
+computeClusters2 = function(medoids, K2, getRefSeries, nb_series_per_chunk)
 {
-       library(cluster)
-       pam_output = cluster::pam(data, K)
-       return ( list( clusts=pam_output$clustering, medoids=pam_output$medoids,
-               ranks=pam_output$id.med ) )
+       synchrones = computeSynchrones(medoids, getRefSeries, nb_series_per_chunk)
+       cluster::pam(computeWerDists(synchrones), K2, diss=TRUE)$medoids
 }
 
-#TODO: appendCoeffs() en C --> serialize et append to file
-
-computeSynchrones = function(...)
+# Compute the synchrones curves (sum of clusters elements) from a clustering result
+computeSynchrones = function(medoids, getRefSeries, nb_series_per_chunk)
 {
-
+       #les getSeries(indices) sont les medoides --> init vect nul pour chacun, puis incr avec les
+       #courbes (getSeriesForSynchrones) les plus proches... --> au sens de la norme L2 ?
+       K = nrow(medoids)
+       synchrones = matrix(0, nrow=K, ncol=ncol(medoids))
+       counts = rep(0,K)
+       index = 1
+       repeat
+       {
+               range = (index-1) + seq_len(nb_series_per_chunk)
+               ref_series = getRefSeries(range)
+               if (is.null(ref_series))
+                       break
+               #get medoids indices for this chunk of series
+               for (i in seq_len(nrow(ref_series)))
+               {
+                       j = which.min( rowSums( sweep(medoids, 2, series[i,], '-')^2 ) )
+                       synchrones[j,] = synchrones[j,] + series[i,]
+                       counts[j] = counts[j] + 1
+               }
+               index = index + nb_series_per_chunk
+       }
+       #NOTE: odds for some clusters to be empty? (when series already come from stage 2)
+       sweep(synchrones, 1, counts, '/')
 }
 
-#Entrée : courbes synchrones, soit après étape 1 itérée, soit après chaqure étape 1
-computeWerDist = function(conso)
+# Compute the WER distance between the synchrones curves (in rows)
+computeWerDist = function(curves)
 {
        if (!require("Rwave", quietly=TRUE))
                stop("Unable to load Rwave library")
-       n <- nrow(conso)
-       delta <- ncol(conso)
+       n <- nrow(curves)
+       delta <- ncol(curves)
        #TODO: automatic tune of all these parameters ? (for other users)
        nvoice   <- 4
-       # noctave = 2^13 = 8192 half hours ~ 180 days ; ~log2(ncol(conso))
+       # noctave = 2^13 = 8192 half hours ~ 180 days ; ~log2(ncol(curves))
        noctave = 13
        # 4 here represent 2^5 = 32 half-hours ~ 1 day
        #NOTE: default scalevector == 2^(0:(noctave * nvoice) / nvoice) * s0 (?)
@@ -79,7 +81,7 @@ computeWerDist = function(conso)
 
        # (normalized) observations node with CWT
        Xcwt4 <- lapply(seq_len(n), function(i) {
-               ts <- scale(ts(conso[i,]), center=TRUE, scale=scaled)
+               ts <- scale(ts(curves[i,]), center=TRUE, scale=scaled)
                totts.cwt = Rwave::cwt(ts,totnoct,nvoice,w0,plot=0)
                ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)]
                #Normalization
@@ -94,7 +96,7 @@ computeWerDist = function(conso)
        {
                for (j in (i+1):n)
                {
-                       #TODO: later, compute CWT here (because not enough storage space for 32M series)
+                       #TODO: later, compute CWT here (because not enough storage space for 200k series)
                        #      'circular=TRUE' is wrong, should just take values on the sides; to rewrite in C
                        num <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE)
                        WX <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[i]])), fcoefs, circular=TRUE)