# Cluster one full task (nb_curves / ntasks series); only step 1 clusteringTask = function(indices, getCoefs, K1, nb_series_per_chunk, ncores) { cl = parallel::makeCluster(ncores) repeat { nb_workers = max( 1, round( length(indices) / nb_series_per_chunk ) ) indices_workers = lapply(seq_len(nb_workers), function(i) { upper_bound = ifelse( i init vect nul pour chacun, puis incr avec les #courbes (getSeriesForSynchrones) les plus proches... --> au sens de la norme L2 ? K = nrow(medoids) synchrones = matrix(0, nrow=K, ncol=ncol(medoids)) counts = rep(0,K) index = 1 repeat { range = (index-1) + seq_len(nb_series_per_chunk) ref_series = getRefSeries(range) if (is.null(ref_series)) break #get medoids indices for this chunk of series for (i in seq_len(nrow(ref_series))) { j = which.min( rowSums( sweep(medoids, 2, series[i,], '-')^2 ) ) synchrones[j,] = synchrones[j,] + series[i,] counts[j] = counts[j] + 1 } index = index + nb_series_per_chunk } #NOTE: odds for some clusters to be empty? (when series already come from stage 2) sweep(synchrones, 1, counts, '/') } # Compute the WER distance between the synchrones curves (in rows) computeWerDist = function(curves) { if (!require("Rwave", quietly=TRUE)) stop("Unable to load Rwave library") n <- nrow(curves) delta <- ncol(curves) #TODO: automatic tune of all these parameters ? (for other users) nvoice <- 4 # noctave = 2^13 = 8192 half hours ~ 180 days ; ~log2(ncol(curves)) noctave = 13 # 4 here represent 2^5 = 32 half-hours ~ 1 day #NOTE: default scalevector == 2^(0:(noctave * nvoice) / nvoice) * s0 (?) scalevector <- 2^(4:(noctave * nvoice) / nvoice) * 2 #condition: ( log2(s0*w0/(2*pi)) - 1 ) * nvoice + 1.5 >= 1 s0=2 w0=2*pi scaled=FALSE s0log = as.integer( (log2( s0*w0/(2*pi) ) - 1) * nvoice + 1.5 ) totnoct = noctave + as.integer(s0log/nvoice) + 1 # (normalized) observations node with CWT Xcwt4 <- lapply(seq_len(n), function(i) { ts <- scale(ts(curves[i,]), center=TRUE, scale=scaled) totts.cwt = Rwave::cwt(ts,totnoct,nvoice,w0,plot=0) ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)] #Normalization sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0) sqres <- sweep(ts.cwt,MARGIN=2,sqs,'*') sqres / max(Mod(sqres)) }) Xwer_dist <- matrix(0., n, n) fcoefs = rep(1/3, 3) #moving average on 3 values (TODO: very slow! correct?!) for (i in 1:(n-1)) { for (j in (i+1):n) { #TODO: later, compute CWT here (because not enough storage space for 200k series) # 'circular=TRUE' is wrong, should just take values on the sides; to rewrite in C num <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE) WX <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[i]])), fcoefs, circular=TRUE) WY <- filter(Mod(Xcwt4[[j]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE) wer2 <- sum(colSums(num)^2) / sum( sum(colSums(WX) * colSums(WY)) ) Xwer_dist[i,j] <- sqrt(delta * ncol(Xcwt4[[1]]) * (1 - wer2)) Xwer_dist[j,i] <- Xwer_dist[i,j] } } diag(Xwer_dist) <- numeric(n) Xwer_dist }