'update'
[epclust.git] / old_C_code / stage2_UNFINISHED / src / 05_cluster2stepWER.r
1 ## File : 05_cluster2stepWER.r
2 ## Description :
3
4 rm(list = ls())
5
6 setwd("~/ownCloud/projects/2014_EDF-Orsay-Lyon2/codes/")
7
8 library(Rwave) # CWT
9 library(cluster) # pam
10 #library(flexclust) # kcca
11 source("aux.r") # auxiliary clustering functions
12
13 #TODO: [plus tard] alternative à sowa (package disparu) : cwt..
14 source("sowas-superseded.r") # auxiliary CWT functions
15
16 ## 1. Read auxiliar data files ####
17
18 identifiants <- read.table("identifs.txt")[ ,1]
19 dates0 <- read.table("datesall.txt")[, 1]
20 dates <- as.character(dates0[grep("2009", dates0)])
21 rm(dates0)
22
23 n <- length(identifiants)
24 p <- delta <- length(dates)
25
26 synchros09 <- t(as.matrix(read.table("~/tmp/2009_synchros200RC.txt")))
27 #synchros09 <- t(as.matrix(read.table("~/tmp/2009_synchros200-random.txt")))
28
29 nas <- which(is.na(synchros09)[, 1]) # some 1/1/2009 are missing
30 synchros09[nas, 1] <- rowMeans(synchros09[nas, 2:4]) #valeurs après 1er janvier
31
32 #moyenne pondérée pour compléter deux demi-heures manquantes
33 imput09 <- synchros09[, 4180:4181] %*% matrix(c(2/3, 1/3, 1/3, 2/3), 2)
34 synchros09 <- cbind(synchros09[, 1:4180], imput09, synchros09[, 4181:17518])
35
36 conso <- synchros09[-201, ]; # series must be on rows
37 n <- nrow(conso)
38 delta <- ncol(conso)
39
40 rm(synchros09, nas)
41
42 ## 2. Compute WER distance matrix ####
43
44 ## _.a CWT -- Filtering the lowest freqs (>6m) ####
45 nvoice <- 4
46 # # noctave4 = 2^13 = 8192 half hours ~ 180 days
47 noctave4 <- adjust.noctave(N = delta, dt = 1, s0 = 2,
48 tw = 0, noctave = 13)
49 # # 4 here represent 2^5 = 32 half-hours ~ 1 day
50 scalevector4 <- 2^(4:(noctave4 * nvoice) / nvoice) * 2
51 lscvect4 <- length(scalevector4)
52 lscvect <- lscvect4 # i should clean my code: werFam demands a lscvect
53
54
55 #(Benjamin)
56 #à partir de là, "conso" == courbes synchrones
57 n <- nrow(conso)
58 delta <- ncol(conso)
59
60
61 #17000 colonnes coeff 1, puis 17000 coeff 2... [non : dans chaque tranche du cube]
62
63 #TODO: une fonction qui fait lignes 59 à 91
64
65 #cube:
66 # Xcwt4 <- toCWT(conso, noctave = noctave4, dt = 1,
67 # scalevector = scalevector4,
68 # lt = delta, smooth = FALSE,
69 # nvoice = nvoice) # observations node with CWT
70 #
71 # #matrix:
72 # ############Xcwt2 <- matrix(0.0, nrow= n, ncol= 2 + delta * lscvect)
73 # #Xcwt2 <- matrix(NA_complex_, nrow= n, ncol= 2 + length((c(Xcwt4[,,1]))))
74 #
75 # #NOTE: delta et lscvect pourraient etre gardés à part (communs)
76 # for(i in 1:n)
77 # Xcwt2[i,] <- c(delta, lscvect, Xcwt4[,,i] / max(Mod(Xcwt4[,,i])) )
78 #
79 # #rm(conso, Xcwt4); gc()
80 #
81 # ## _.b WER^2 distances ########
82 # Xwer_dist <- matrix(0.0, n, n)
83 # for(i in 1:(n - 1)){
84 # mat1 <- vect2mat(Xcwt2[i,])
85 # for(j in (i + 1):n){
86 # mat2 <- vect2mat(Xcwt2[j,])
87 # num <- Mod(mat1 * Conj(mat2))
88 # WX <- Mod(mat1 * Conj(mat1))
89 # WY <- Mod(mat2 * Conj(mat2))
90 # smsmnum <- smCWT(num, scalevector = scalevector4)
91 # smsmWX <- smCWT(WX, scalevector = scalevector4)
92 # smsmWY <- smCWT(WY, scalevector = scalevector4)
93 # wer2 <- sum(colSums(smsmnum)^2) /
94 # sum( sum(colSums(smsmWX) * colSums(smsmWY)) )
95 # Xwer_dist[i, j] <- sqrt(delta * lscvect * (1 - wer2))
96 # Xwer_dist[j, i] <- Xwer_dist[i, j]
97 # }
98 # }
99 # diag(Xwer_dist) <- numeric(n)
100 #
101 # save(Xwer_dist, file = "../res/2009_synchros200WER.Rdata")
102 # save(Xwer_dist, file = "../res/2009_synchros200-randomWER.Rdata")
103
104
105
106 #lignes 59 à 91 "dépliées" :
107 Xcwt4 <- toCWT(conso, noctave = noctave4, dt = 1,
108 scalevector = scalevector4,
109 lt = delta, smooth = FALSE,
110 nvoice = nvoice) # observations node with CWT
111
112 #matrix:
113 ############Xcwt2 <- matrix(0.0, nrow= n, ncol= 2 + delta * lscvect)
114 Xcwt2 <- matrix(NA_complex_, nrow= n, ncol= 2 + length((c(Xcwt4[,,1]))))
115
116 #NOTE: delta et lscvect pourraient etre gardés à part (communs)
117 for(i in 1:n)
118 Xcwt2[i,] <- c(delta, lscvect, Xcwt4[,,i] / max(Mod(Xcwt4[,,i])) )
119
120 #rm(conso, Xcwt4); gc()
121
122 ## _.b WER^2 distances ########
123 Xwer_dist <- matrix(0.0, n, n)
124 for(i in 1:(n - 1)){
125 mat1 <- vect2mat(Xcwt2[i,])
126
127 #NOTE: vect2mat = as.matrix ?! (dans aux.R)
128 vect2mat <- function(vect){
129 vect <- as.vector(vect)
130 matrix(vect[-(1:2)], delta, lscvect)
131 }
132
133 for(j in (i + 1):n){
134 mat2 <- vect2mat(Xcwt2[j,])
135 num <- Mod(mat1 * Conj(mat2))
136 WX <- Mod(mat1 * Conj(mat1))
137 WY <- Mod(mat2 * Conj(mat2))
138 smsmnum <- smCWT(num, scalevector = scalevector4)
139 smsmWX <- smCWT(WX, scalevector = scalevector4)
140 smsmWY <- smCWT(WY, scalevector = scalevector4)
141 wer2 <- sum(colSums(smsmnum)^2) /
142 sum( sum(colSums(smsmWX) * colSums(smsmWY)) )
143 Xwer_dist[i, j] <- sqrt(delta * lscvect * (1 - wer2))
144 Xwer_dist[j, i] <- Xwer_dist[i, j]
145 }
146 }
147 diag(Xwer_dist) <- numeric(n)
148
149 #fonction smCWT (dans aux.R)
150 smCWT <- function(CWT, sw= 0, tw= 0, swabs= 0,
151 nvoice= 12, noctave= 2, s0= 2, w0= 2*pi,
152 lt= 24, dt= 0.5, scalevector )
153 {
154 # noctave <- adjust.noctave(lt, dt, s0, tw, noctave)
155 # scalevector <- 2^(0:(noctave * nvoice) / nvoice) * s0
156 wsp <- Mod(CWT)
157 smwsp <- smooth.matrix(wsp, swabs)
158 smsmwsp <- smooth.time(smwsp, tw, dt, scalevector)
159 smsmwsp
160 }
161
162 #dans sowas.R
163 smooth.matrix <- function(wt,swabs){
164
165 if (swabs != 0)
166 smwt <- t(filter(t(wt),rep(1,2*swabs+1)/(2*swabs+1)))
167 else
168 smwt <- wt
169
170 smwt
171
172 }
173 smooth.time <- function(wt,tw,dt,scalevector){
174
175 smwt <- wt
176
177 if (tw != 0){
178 for (i in 1:length(scalevector)){
179
180 twi <- as.integer(scalevector[i]*tw/dt)
181 smwt[,i] <- filter(wt[,i],rep(1,2*twi+1)/(2*twi+1))
182
183 }
184 }
185 smwt
186 }
187
188 #et filter() est dans stats::
189
190 #cf. filters en C dans : https://svn.r-project.org/R/trunk/src/library/stats/src/filter.c
191
192
193
194 load("../res/2009_synchros200WER.Rdata")
195 #load("../res/2009_synchros200-randomWER.Rdata")
196
197 ## 3. Cluster using WER distance matrix ####
198
199 #hc <- hclust(as.dist(Xwer_dist), method = "ward.D")
200 #plot(hc)
201 #
202 # #clust <- cutree(hc, 2)
203 #
204 for(K in 2:30){
205 #K <- 3
206 #pamfit <- pam(tdata[-201, ci$selectv], k = K)
207 pamfit <- pam(as.dist(Xwer_dist), k = K, diss = TRUE)
208
209 #table(pamfit$clustering)
210
211 SC <- matrix(0, ncol = p, nrow = K)
212
213 clustfactor <- pamfit$clustering
214 # for(k in 1:K){
215 # clustk <- which(clustfactor == k)
216 # if(length(clustk) > 0) {
217 # if(length(clustk) > 1) {
218 # SCk <- colSums(synchros09[which(clustfactor == k), ])
219 # } else {
220 # SCk <- synchros09[which(clustfactor == k), ]
221 # }
222 # SC[k, ] <- SC[k, ] + SCk
223 # rm(SCk)
224 # }
225 #}
226
227 #write.table(clustfactor, file = paste0("~/tmp/clustfactorRC", K, ".txt"))
228 #write.table(clustfactor, file = "~/tmp/clustfactor3.txt")
229 #write.table(clustfactor, file = paste0("~/tmp/clustfactorWER", K, ".txt"))
230 write.table(clustfactor, file = paste0("~/tmp/clustfactor-randomWER", K, ".txt"))
231 }
232 #
233 # # Plots
234 # layout(1)
235 # matplot(t(SC)[48*10 + 1:(48*30), ], type = 'l', ylab = '',col = 1:3, lty = 1)
236 # matplot(t(SC)[48*100 + 1:(48*30), ], type = 'l', ylab = '', col = 1:3, lty = 1)
237 #
238 #
239 #