update code for stage 2 in epclust
[epclust.git] / epclust / R / stage2.R
1 library("Rwave")
2
3 #Entrée : courbes synchrones, soit après étape 1 itérée, soit après chaqure étape 1
4 #TODO: bout de code qui calcule les courbes synchrones après étapes 1+2 à partir des ID médoïdes
5
6 #(Benjamin)
7 #à partir de là, "conso" == courbes synchrones
8 n <- nrow(conso)
9 delta <- ncol(conso)
10
11 #17000 colonnes coeff 1, puis 17000 coeff 2... [non : dans chaque tranche du cube]
12 # #NOTE: delta et lscvect pourraient etre gardés à part (communs)
13
14 #lignes 59 à 91 "dépliées" :
15 Xcwt4 <- toCWT(conso, noctave = noctave4, dt = 1,
16 scalevector = scalevector4,
17 lt = delta, smooth = FALSE,
18 nvoice = nvoice) # observations node with CWT
19
20 #toCWT: (aux)
21 ##NOTE: renvoie une matrice 3D
22 toCWT <- function(X, sw= 0, tw= 0, swabs= 0,
23 nvoice= 12, noctave= 5,
24 s0= 2, w0= 2*pi, lt= 24, dt= 0.5,
25 spectra = FALSE, smooth = TRUE,
26 scaled = FALSE,
27 scalevector)
28 { noctave <- adjust.noctave(lt, dt, s0, tw, noctave)
29 if(missing(scalevector))
30 scalevector <- 2^(0:(noctave * nvoice) / nvoice) * s0
31 res <- lapply(1:nrow(X), function(n)
32 { tsX <- ts( X[n,] )
33 tsCent <- tsX - mean(tsX)
34 if(scaled) tsCent <- ts(scale(tsCent))
35 tsCent.cwt <- cwt.ts(tsCent, s0, noctave, nvoice, w0)
36 tsCent.cwt
37 } )
38 if( spectra ) res <- lapply(res, function(l) Mod(l)^2 )
39 if( smooth ) res <- lapply(res, smCWT, swabs = swabs,
40 tw = tw, dt = dt,
41 scalevector = scalevector)
42 resArray <- array(NA, c(nrow(res[[1]]), ncol(res[[1]]),
43 length(res)))
44 for( l in 1:length(res) ) resArray[ , , l] <- res[[l]]
45 resArray
46 }
47
48 #from sowas
49 cwt.ts <- function(ts,s0,noctave=5,nvoice=10,w0=2*pi){
50
51 if (class(ts)!="ts"){
52
53 cat("# This function needs a time series object as input. You may construct this by using the function ts(data,start,deltat). Try '?ts' for help.\n")
54
55 }
56 else{
57
58 t=time(ts)
59 dt=t[2]-t[1]
60
61 s0unit=s0/dt*w0/(2*pi)
62 s0log=as.integer((log2(s0unit)-1)*nvoice+1.5)
63
64 if (s0log<1){
65 cat(paste("# s0unit = ",s0unit,"\n",sep=""))
66 cat(paste("# s0log = ",s0log,"\n",sep=""))
67 cat("# s0 too small for w0! \n")
68 }
69 totnoct=noctave+as.integer(s0log/nvoice)+1
70
71 #cwt from package Rwave
72 totts.cwt=cwt(ts,totnoct,nvoice,w0,plot=0)
73
74 ts.cwt=totts.cwt[,s0log:(s0log+noctave*nvoice)]
75
76 #Normalization
77 sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0)
78 smat <- matrix(rep(sqs,length(t)),nrow=length(t),byrow=TRUE)
79
80 ts.cwt*smat
81
82 }
83
84 }
85
86 #matrix:
87 ############Xcwt2 <- matrix(0.0, nrow= n, ncol= 2 + delta * lscvect)
88 Xcwt2 <- matrix(NA_complex_, nrow= n, ncol= 2 + length((c(Xcwt4[,,1]))))
89
90 #NOTE: delta et lscvect pourraient etre gardés à part (communs)
91 for(i in 1:n)
92 Xcwt2[i,] <- c(delta, lscvect, Xcwt4[,,i] / max(Mod(Xcwt4[,,i])) )
93
94 #rm(conso, Xcwt4); gc()
95
96 ## _.b WER^2 distances ########
97 Xwer_dist <- matrix(0.0, n, n)
98 for(i in 1:(n - 1)){
99 mat1 <- vect2mat(Xcwt2[i,])
100
101 #NOTE: vect2mat = as.matrix ?! (dans aux.R)
102 vect2mat <- function(vect){
103 vect <- as.vector(vect)
104 matrix(vect[-(1:2)], delta, lscvect)
105 }
106
107 for(j in (i + 1):n){
108 mat2 <- vect2mat(Xcwt2[j,])
109 num <- Mod(mat1 * Conj(mat2))
110 WX <- Mod(mat1 * Conj(mat1))
111 WY <- Mod(mat2 * Conj(mat2))
112 smsmnum <- smCWT(num, scalevector = scalevector4)
113 smsmWX <- smCWT(WX, scalevector = scalevector4)
114 smsmWY <- smCWT(WY, scalevector = scalevector4)
115 wer2 <- sum(colSums(smsmnum)^2) /
116 sum( sum(colSums(smsmWX) * colSums(smsmWY)) )
117 Xwer_dist[i, j] <- sqrt(delta * lscvect * (1 - wer2))
118 Xwer_dist[j, i] <- Xwer_dist[i, j]
119 }
120 }
121 diag(Xwer_dist) <- numeric(n)
122
123 #fonction smCWT (dans aux.R)
124 smCWT <- function(CWT, sw= 0, tw= 0, swabs= 0,
125 nvoice= 12, noctave= 2, s0= 2, w0= 2*pi,
126 lt= 24, dt= 0.5, scalevector )
127 {
128 # noctave <- adjust.noctave(lt, dt, s0, tw, noctave)
129 # scalevector <- 2^(0:(noctave * nvoice) / nvoice) * s0
130 wsp <- Mod(CWT)
131 smwsp <- smooth.matrix(wsp, swabs)
132 smsmwsp <- smooth.time(smwsp, tw, dt, scalevector)
133 smsmwsp
134 }
135
136 #dans sowas.R (...donc on ne lisse pas à ce niveau ?)
137 smooth.matrix <- function(wt,swabs){
138
139 if (swabs != 0)
140 smwt <- t(filter(t(wt),rep(1,2*swabs+1)/(2*swabs+1)))
141 else
142 smwt <- wt
143
144 smwt
145
146 }
147 smooth.time <- function(wt,tw,dt,scalevector){
148
149 smwt <- wt
150
151 if (tw != 0){
152 for (i in 1:length(scalevector)){
153
154 twi <- as.integer(scalevector[i]*tw/dt)
155 smwt[,i] <- filter(wt[,i],rep(1,2*twi+1)/(2*twi+1))
156
157 }
158 }
159 smwt
160 }
161
162 #et filter() est dans stats::
163 > filter
164 function (x, filter, method = c("convolution", "recursive"),
165 sides = 2L, circular = FALSE, init = NULL)
166 {
167 method <- match.arg(method)
168 x <- as.ts(x)
169 storage.mode(x) <- "double"
170 xtsp <- tsp(x)
171 n <- as.integer(NROW(x))
172 if (is.na(n))
173 stop("invalid value of nrow(x)", domain = NA)
174 nser <- NCOL(x)
175 filter <- as.double(filter)
176 nfilt <- as.integer(length(filter))
177 if (is.na(n))
178 stop("invalid value of length(filter)", domain = NA)
179 if (anyNA(filter))
180 stop("missing values in 'filter'")
181 if (method == "convolution") {
182 if (nfilt > n)
183 stop("'filter' is longer than time series")
184 sides <- as.integer(sides)
185 if (is.na(sides) || (sides != 1L && sides != 2L))
186 stop("argument 'sides' must be 1 or 2")
187 circular <- as.logical(circular)
188 if (is.na(circular))
189 stop("'circular' must be logical and not NA")
190 if (is.matrix(x)) {
191 y <- matrix(NA, n, nser)
192 for (i in seq_len(nser)) y[, i] <- .Call(C_cfilter,
193 x[, i], filter, sides, circular)
194 }
195 else y <- .Call(C_cfilter, x, filter, sides, circular)
196 }
197 else {
198 if (missing(init)) {
199 init <- matrix(0, nfilt, nser)
200 }
201 else {
202 ni <- NROW(init)
203 if (ni != nfilt)
204 stop("length of 'init' must equal length of 'filter'")
205 if (NCOL(init) != 1L && NCOL(init) != nser) {
206 stop(sprintf(ngettext(nser, "'init' must have %d column",
207 "'init' must have 1 or %d columns", domain = "R-stats"),
208 nser), domain = NA)
209 }
210 if (!is.matrix(init))
211 dim(init) <- c(nfilt, nser)
212 }
213 ind <- seq_len(nfilt)
214 if (is.matrix(x)) {
215 y <- matrix(NA, n, nser)
216 for (i in seq_len(nser)) y[, i] <- .Call(C_rfilter,
217 x[, i], filter, c(rev(init[, i]), double(n)))[-ind]
218 }
219 else y <- .Call(C_rfilter, x, filter, c(rev(init[, 1L]),
220 double(n)))[-ind]
221 }
222 tsp(y) <- xtsp
223 class(y) <- if (nser > 1L)
224 c("mts", "ts")
225 else "ts"
226 y
227 }
228 <bytecode: 0x1b05db8>
229 <environment: namespace:stats>
230
231
232 #cf. filters en C dans : https://svn.r-project.org/R/trunk/src/library/stats/src/filter.c
233 #ifdef HAVE_CONFIG_H
234 # include <config.h>
235 #endif
236
237 #include <R.h>
238 #include "ts.h"
239
240 #ifndef min
241 #define min(a, b) ((a < b)?(a):(b))
242 #define max(a, b) ((a < b)?(b):(a))
243 #endif
244
245 // currently ISNAN includes NAs
246 #define my_isok(x) (!ISNA(x) & !ISNAN(x))
247
248 #Pour method=="convolution" dans filter() (fonction R)
249 SEXP cfilter(SEXP sx, SEXP sfilter, SEXP ssides, SEXP scircular)
250 {
251 if (TYPEOF(sx) != REALSXP || TYPEOF(sfilter) != REALSXP)
252 error("invalid input");
253 R_xlen_t nx = XLENGTH(sx), nf = XLENGTH(sfilter);
254 int sides = asInteger(ssides), circular = asLogical(scircular);
255 if(sides == NA_INTEGER || circular == NA_LOGICAL) error("invalid input");
256
257 SEXP ans = allocVector(REALSXP, nx);
258
259 R_xlen_t i, j, nshift;
260 double z, tmp, *x = REAL(sx), *filter = REAL(sfilter), *out = REAL(ans);
261
262 if(sides == 2) nshift = nf /2; else nshift = 0;
263 if(!circular) {
264 for(i = 0; i < nx; i++) {
265 z = 0;
266 if(i + nshift - (nf - 1) < 0 || i + nshift >= nx) {
267 out[i] = NA_REAL;
268 continue;
269 }
270 for(j = max(0, nshift + i - nx); j < min(nf, i + nshift + 1) ; j++) {
271 tmp = x[i + nshift - j];
272 if(my_isok(tmp)) z += filter[j] * tmp;
273 else { out[i] = NA_REAL; goto bad; }
274 }
275 out[i] = z;
276 bad:
277 continue;
278 }
279 } else { /* circular */
280 for(i = 0; i < nx; i++)
281 {
282 z = 0;
283 for(j = 0; j < nf; j++) {
284 R_xlen_t ii = i + nshift - j;
285 if(ii < 0) ii += nx;
286 if(ii >= nx) ii -= nx;
287 tmp = x[ii];
288 if(my_isok(tmp)) z += filter[j] * tmp;
289 else { out[i] = NA_REAL; goto bad2; }
290 }
291 out[i] = z;
292 bad2:
293 continue;
294 }
295 }
296 return ans;
297 }