Fixing computer play
authorBenjamin Auder <benjamin.auder@somewhere>
Wed, 10 Apr 2019 14:42:39 +0000 (16:42 +0200)
committerBenjamin Auder <benjamin.auder@somewhere>
Wed, 10 Apr 2019 14:42:39 +0000 (16:42 +0200)
client/src/base_rules.js
client/src/components/ComputerGame.vue
client/src/playCompMove.js
client/src/variants/Alice.js

index bb2edc4..087b4f5 100644 (file)
@@ -6,1317 +6,1318 @@ import { random, sample, shuffle } from "@/utils/alea";
 
 export const PiPo = class PiPo //Piece+Position
 {
-       // o: {piece[p], color[c], posX[x], posY[y]}
-       constructor(o)
-       {
-               this.p = o.p;
-               this.c = o.c;
-               this.x = o.x;
-               this.y = o.y;
-       }
+  // o: {piece[p], color[c], posX[x], posY[y]}
+  constructor(o)
+  {
+    this.p = o.p;
+    this.c = o.c;
+    this.x = o.x;
+    this.y = o.y;
+  }
 }
 
 // TODO: for animation, moves should contains "moving" and "fading" maybe...
 export const Move = class Move
 {
-       // o: {appear, vanish, [start,] [end,]}
-       // appear,vanish = arrays of PiPo
-       // start,end = coordinates to apply to trigger move visually (think castle)
-       constructor(o)
-       {
-               this.appear = o.appear;
-               this.vanish = o.vanish;
-               this.start = !!o.start ? o.start : {x:o.vanish[0].x, y:o.vanish[0].y};
-               this.end = !!o.end ? o.end : {x:o.appear[0].x, y:o.appear[0].y};
-       }
+  // o: {appear, vanish, [start,] [end,]}
+  // appear,vanish = arrays of PiPo
+  // start,end = coordinates to apply to trigger move visually (think castle)
+  constructor(o)
+  {
+    this.appear = o.appear;
+    this.vanish = o.vanish;
+    this.start = !!o.start ? o.start : {x:o.vanish[0].x, y:o.vanish[0].y};
+    this.end = !!o.end ? o.end : {x:o.appear[0].x, y:o.appear[0].y};
+  }
 }
 
 // NOTE: x coords = top to bottom; y = left to right (from white player perspective)
 export const ChessRules = class ChessRules
 {
-       //////////////
-       // MISC UTILS
-
-       static get HasFlags() { return true; } //some variants don't have flags
-
-       static get HasEnpassant() { return true; } //some variants don't have ep.
-
-       // Path to pieces
-       static getPpath(b)
-       {
-               return b; //usual pieces in pieces/ folder
-       }
-
-       // Turn "wb" into "B" (for FEN)
-       static board2fen(b)
-       {
-               return b[0]=='w' ? b[1].toUpperCase() : b[1];
-       }
-
-       // Turn "p" into "bp" (for board)
-       static fen2board(f)
-       {
-               return f.charCodeAt()<=90 ? "w"+f.toLowerCase() : "b"+f;
-       }
-
-       // Check if FEN describe a position
-       static IsGoodFen(fen)
-       {
-               const fenParsed = V.ParseFen(fen);
-               // 1) Check position
-               if (!V.IsGoodPosition(fenParsed.position))
-                       return false;
-               // 2) Check turn
-               if (!fenParsed.turn || !V.IsGoodTurn(fenParsed.turn))
-                       return false;
-               // 3) Check moves count
-               if (!fenParsed.movesCount || !(parseInt(fenParsed.movesCount) >= 0))
-                       return false;
-               // 4) Check flags
-               if (V.HasFlags && (!fenParsed.flags || !V.IsGoodFlags(fenParsed.flags)))
-                       return false;
-               // 5) Check enpassant
-               if (V.HasEnpassant &&
-                       (!fenParsed.enpassant || !V.IsGoodEnpassant(fenParsed.enpassant)))
-               {
-                       return false;
-               }
-               return true;
-       }
-
-       // Is position part of the FEN a priori correct?
-       static IsGoodPosition(position)
-       {
-               if (position.length == 0)
-                       return false;
-               const rows = position.split("/");
-               if (rows.length != V.size.x)
-                       return false;
-               for (let row of rows)
-               {
-                       let sumElts = 0;
-                       for (let i=0; i<row.length; i++)
-                       {
-                               if (V.PIECES.includes(row[i].toLowerCase()))
-                                       sumElts++;
-                               else
-                               {
-                                       const num = parseInt(row[i]);
-                                       if (isNaN(num))
-                                               return false;
-                                       sumElts += num;
-                               }
-                       }
-                       if (sumElts != V.size.y)
-                               return false;
-               }
-               return true;
-       }
-
-       // For FEN checking
-       static IsGoodTurn(turn)
-       {
-               return ["w","b"].includes(turn);
-       }
-
-       // For FEN checking
-       static IsGoodFlags(flags)
-       {
-               return !!flags.match(/^[01]{4,4}$/);
-       }
-
-       static IsGoodEnpassant(enpassant)
-       {
-               if (enpassant != "-")
-               {
-                       const ep = V.SquareToCoords(fenParsed.enpassant);
-                       if (isNaN(ep.x) || !V.OnBoard(ep))
-                               return false;
-               }
-               return true;
-       }
-
-       // 3 --> d (column number to letter)
-       static CoordToColumn(colnum)
-       {
-               return String.fromCharCode(97 + colnum);
-       }
-
-       // d --> 3 (column letter to number)
-       static ColumnToCoord(column)
-       {
-               return column.charCodeAt(0) - 97;
-       }
-
-       // a4 --> {x:3,y:0}
-       static SquareToCoords(sq)
-       {
-               return {
-                       // NOTE: column is always one char => max 26 columns
-                       // row is counted from black side => subtraction
-                       x: V.size.x - parseInt(sq.substr(1)),
-                       y: sq[0].charCodeAt() - 97
-               };
-       }
-
-       // {x:0,y:4} --> e8
-       static CoordsToSquare(coords)
-       {
-               return V.CoordToColumn(coords.y) + (V.size.x - coords.x);
-       }
-
-       // Aggregates flags into one object
-       aggregateFlags()
-       {
-               return this.castleFlags;
-       }
-
-       // Reverse operation
-       disaggregateFlags(flags)
-       {
-               this.castleFlags = flags;
-       }
-
-       // En-passant square, if any
-       getEpSquare(moveOrSquare)
-       {
-               if (!moveOrSquare)
-                       return undefined;
-               if (typeof moveOrSquare === "string")
-               {
-                       const square = moveOrSquare;
-                       if (square == "-")
-                               return undefined;
-                       return V.SquareToCoords(square);
-               }
-               // Argument is a move:
-               const move = moveOrSquare;
-               const [sx,sy,ex] = [move.start.x,move.start.y,move.end.x];
-               // TODO: next conditions are first for Atomic, and third for Checkered
-               if (move.appear.length > 0 && move.appear[0].p == V.PAWN && ["w","b"].includes(move.appear[0].c) && Math.abs(sx - ex) == 2)
-               {
-                       return {
-                               x: (sx + ex)/2,
-                               y: sy
-                       };
-               }
-               return undefined; //default
-       }
-
-       // Can thing on square1 take thing on square2
-       canTake([x1,y1], [x2,y2])
-       {
-               return this.getColor(x1,y1) !== this.getColor(x2,y2);
-       }
-
-       // Is (x,y) on the chessboard?
-       static OnBoard(x,y)
-       {
-               return (x>=0 && x<V.size.x && y>=0 && y<V.size.y);
-       }
-
-       // Used in interface: 'side' arg == player color
-       canIplay(side, [x,y])
-       {
-               return (this.turn == side && this.getColor(x,y) == side);
-       }
-
-       // On which squares is color under check ? (for interface)
-       getCheckSquares(color)
-       {
-               return this.isAttacked(this.kingPos[color], [V.GetOppCol(color)])
-                       ? [JSON.parse(JSON.stringify(this.kingPos[color]))] //need to duplicate!
-                       : [];
-       }
-
-       /////////////
-       // FEN UTILS
-
-       // Setup the initial random (assymetric) position
-       static GenRandInitFen()
-       {
-               let pieces = { "w": new Array(8), "b": new Array(8) };
-               // Shuffle pieces on first and last rank
-               for (let c of ["w","b"])
-               {
-                       let positions = ArrayFun.range(8);
-
-                       // Get random squares for bishops
-                       let randIndex = 2 * random(4);
-                       const bishop1Pos = positions[randIndex];
-                       // The second bishop must be on a square of different color
-                       let randIndex_tmp = 2 * random(4) + 1;
-                       const bishop2Pos = positions[randIndex_tmp];
-                       // Remove chosen squares
-                       positions.splice(Math.max(randIndex,randIndex_tmp), 1);
-                       positions.splice(Math.min(randIndex,randIndex_tmp), 1);
-
-                       // Get random squares for knights
-                       randIndex = random(6);
-                       const knight1Pos = positions[randIndex];
-                       positions.splice(randIndex, 1);
-                       randIndex = random(5);
-                       const knight2Pos = positions[randIndex];
-                       positions.splice(randIndex, 1);
-
-                       // Get random square for queen
-                       randIndex = random(4);
-                       const queenPos = positions[randIndex];
-                       positions.splice(randIndex, 1);
-
-                       // Rooks and king positions are now fixed,
-                       // because of the ordering rook-king-rook
-                       const rook1Pos = positions[0];
-                       const kingPos = positions[1];
-                       const rook2Pos = positions[2];
-
-                       // Finally put the shuffled pieces in the board array
-                       pieces[c][rook1Pos] = 'r';
-                       pieces[c][knight1Pos] = 'n';
-                       pieces[c][bishop1Pos] = 'b';
-                       pieces[c][queenPos] = 'q';
-                       pieces[c][kingPos] = 'k';
-                       pieces[c][bishop2Pos] = 'b';
-                       pieces[c][knight2Pos] = 'n';
-                       pieces[c][rook2Pos] = 'r';
-               }
-               return pieces["b"].join("") +
-                       "/pppppppp/8/8/8/8/PPPPPPPP/" +
-                       pieces["w"].join("").toUpperCase() +
-                       " w 0 1111 -"; //add turn + flags + enpassant
-       }
-
-       // "Parse" FEN: just return untransformed string data
-       static ParseFen(fen)
-       {
-               const fenParts = fen.split(" ");
-               let res =
-               {
-                       position: fenParts[0],
-                       turn: fenParts[1],
-                       movesCount: fenParts[2],
-               };
-               let nextIdx = 3;
-               if (V.HasFlags)
-                       Object.assign(res, {flags: fenParts[nextIdx++]});
-               if (V.HasEnpassant)
-                       Object.assign(res, {enpassant: fenParts[nextIdx]});
-               return res;
-       }
-
-       // Return current fen (game state)
-       getFen()
-       {
-               return this.getBaseFen() + " " +
-                       this.getTurnFen() + " " + this.movesCount +
-                       (V.HasFlags ? (" " + this.getFlagsFen()) : "") +
-                       (V.HasEnpassant ? (" " + this.getEnpassantFen()) : "");
-       }
-
-       // Position part of the FEN string
-       getBaseFen()
-       {
-               let position = "";
-               for (let i=0; i<V.size.x; i++)
-               {
-                       let emptyCount = 0;
-                       for (let j=0; j<V.size.y; j++)
-                       {
-                               if (this.board[i][j] == V.EMPTY)
-                                       emptyCount++;
-                               else
-                               {
-                                       if (emptyCount > 0)
-                                       {
-                                               // Add empty squares in-between
-                                               position += emptyCount;
-                                               emptyCount = 0;
-                                       }
-                                       position += V.board2fen(this.board[i][j]);
-                               }
-                       }
-                       if (emptyCount > 0)
-                       {
-                               // "Flush remainder"
-                               position += emptyCount;
-                       }
-                       if (i < V.size.x - 1)
-                               position += "/"; //separate rows
-               }
-               return position;
-       }
-
-       getTurnFen()
-       {
-               return this.turn;
-       }
-
-       // Flags part of the FEN string
-       getFlagsFen()
-       {
-               let flags = "";
-               // Add castling flags
-               for (let i of ['w','b'])
-               {
-                       for (let j=0; j<2; j++)
-                               flags += (this.castleFlags[i][j] ? '1' : '0');
-               }
-               return flags;
-       }
-
-       // Enpassant part of the FEN string
-       getEnpassantFen()
-       {
-               const L = this.epSquares.length;
-               if (!this.epSquares[L-1])
-                       return "-"; //no en-passant
-               return V.CoordsToSquare(this.epSquares[L-1]);
-       }
-
-       // Turn position fen into double array ["wb","wp","bk",...]
-       static GetBoard(position)
-       {
-               const rows = position.split("/");
-               let board = ArrayFun.init(V.size.x, V.size.y, "");
-               for (let i=0; i<rows.length; i++)
-               {
-                       let j = 0;
-                       for (let indexInRow = 0; indexInRow < rows[i].length; indexInRow++)
-                       {
-                               const character = rows[i][indexInRow];
-                               const num = parseInt(character);
-                               if (!isNaN(num))
-                                       j += num; //just shift j
-                               else //something at position i,j
-                                       board[i][j++] = V.fen2board(character);
-                       }
-               }
-               return board;
-       }
-
-       // Extract (relevant) flags from fen
-       setFlags(fenflags)
-       {
-               // white a-castle, h-castle, black a-castle, h-castle
-               this.castleFlags = {'w': [true,true], 'b': [true,true]};
-               if (!fenflags)
-                       return;
-               for (let i=0; i<4; i++)
-                       this.castleFlags[i < 2 ? 'w' : 'b'][i%2] = (fenflags.charAt(i) == '1');
-       }
-
-       //////////////////
-       // INITIALIZATION
-
-       // Fen string fully describes the game state
-       constructor(fen)
-       {
-               const fenParsed = V.ParseFen(fen);
-               this.board = V.GetBoard(fenParsed.position);
-               this.turn = fenParsed.turn[0]; //[0] to work with MarseilleRules
-               this.movesCount = parseInt(fenParsed.movesCount);
-               this.setOtherVariables(fen);
-       }
-
-       // Scan board for kings and rooks positions
-       scanKingsRooks(fen)
-       {
-               this.INIT_COL_KING = {'w':-1, 'b':-1};
-               this.INIT_COL_ROOK = {'w':[-1,-1], 'b':[-1,-1]};
-               this.kingPos = {'w':[-1,-1], 'b':[-1,-1]}; //squares of white and black king
-               const fenRows = V.ParseFen(fen).position.split("/");
-               for (let i=0; i<fenRows.length; i++)
-               {
-                       let k = 0; //column index on board
-                       for (let j=0; j<fenRows[i].length; j++)
-                       {
-                               switch (fenRows[i].charAt(j))
-                               {
-                                       case 'k':
-                                               this.kingPos['b'] = [i,k];
-                                               this.INIT_COL_KING['b'] = k;
-                                               break;
-                                       case 'K':
-                                               this.kingPos['w'] = [i,k];
-                                               this.INIT_COL_KING['w'] = k;
-                                               break;
-                                       case 'r':
-                                               if (this.INIT_COL_ROOK['b'][0] < 0)
-                                                       this.INIT_COL_ROOK['b'][0] = k;
-                                               else
-                                                       this.INIT_COL_ROOK['b'][1] = k;
-                                               break;
-                                       case 'R':
-                                               if (this.INIT_COL_ROOK['w'][0] < 0)
-                                                       this.INIT_COL_ROOK['w'][0] = k;
-                                               else
-                                                       this.INIT_COL_ROOK['w'][1] = k;
-                                               break;
-                                       default:
-                                               const num = parseInt(fenRows[i].charAt(j));
-                                               if (!isNaN(num))
-                                                       k += (num-1);
-                               }
-                               k++;
-                       }
-               }
-       }
-
-       // Some additional variables from FEN (variant dependant)
-       setOtherVariables(fen)
-       {
-               // Set flags and enpassant:
-               const parsedFen = V.ParseFen(fen);
-               if (V.HasFlags)
-                       this.setFlags(parsedFen.flags);
-               if (V.HasEnpassant)
-               {
-                       const epSq = parsedFen.enpassant != "-"
-                               ? V.SquareToCoords(parsedFen.enpassant)
-                               : undefined;
-                       this.epSquares = [ epSq ];
-               }
-               // Search for king and rooks positions:
-               this.scanKingsRooks(fen);
-       }
-
-       /////////////////////
-       // GETTERS & SETTERS
-
-       static get size()
-       {
-               return {x:8, y:8};
-       }
-
-       // Color of thing on suqare (i,j). 'undefined' if square is empty
-       getColor(i,j)
-       {
-               return this.board[i][j].charAt(0);
-       }
-
-       // Piece type on square (i,j). 'undefined' if square is empty
-       getPiece(i,j)
-       {
-               return this.board[i][j].charAt(1);
-       }
-
-       // Get opponent color
-       static GetOppCol(color)
-       {
-               return (color=="w" ? "b" : "w");
-       }
-
-       // Get next color (for compatibility with 3 and 4 players games)
-       static GetNextCol(color)
-       {
-               return V.GetOppCol(color);
-       }
-
-       // Pieces codes (for a clearer code)
-       static get PAWN() { return 'p'; }
-       static get ROOK() { return 'r'; }
-       static get KNIGHT() { return 'n'; }
-       static get BISHOP() { return 'b'; }
-       static get QUEEN() { return 'q'; }
-       static get KING() { return 'k'; }
-
-       // For FEN checking:
-       static get PIECES()
-       {
-               return [V.PAWN,V.ROOK,V.KNIGHT,V.BISHOP,V.QUEEN,V.KING];
-       }
-
-       // Empty square
-       static get EMPTY() { return ""; }
-
-       // Some pieces movements
-       static get steps()
-       {
-               return {
-                       'r': [ [-1,0],[1,0],[0,-1],[0,1] ],
-                       'n': [ [-1,-2],[-1,2],[1,-2],[1,2],[-2,-1],[-2,1],[2,-1],[2,1] ],
-                       'b': [ [-1,-1],[-1,1],[1,-1],[1,1] ],
-               };
-       }
-
-       ////////////////////
-       // MOVES GENERATION
-
-       // All possible moves from selected square (assumption: color is OK)
-       getPotentialMovesFrom([x,y])
-       {
-               switch (this.getPiece(x,y))
-               {
-                       case V.PAWN:
-                               return this.getPotentialPawnMoves([x,y]);
-                       case V.ROOK:
-                               return this.getPotentialRookMoves([x,y]);
-                       case V.KNIGHT:
-                               return this.getPotentialKnightMoves([x,y]);
-                       case V.BISHOP:
-                               return this.getPotentialBishopMoves([x,y]);
-                       case V.QUEEN:
-                               return this.getPotentialQueenMoves([x,y]);
-                       case V.KING:
-                               return this.getPotentialKingMoves([x,y]);
-               }
-       }
-
-       // Build a regular move from its initial and destination squares.
-       // tr: transformation
-       getBasicMove([sx,sy], [ex,ey], tr)
-       {
-               let mv = new Move({
-                       appear: [
-                               new PiPo({
-                                       x: ex,
-                                       y: ey,
-                                       c: !!tr ? tr.c : this.getColor(sx,sy),
-                                       p: !!tr ? tr.p : this.getPiece(sx,sy)
-                               })
-                       ],
-                       vanish: [
-                               new PiPo({
-                                       x: sx,
-                                       y: sy,
-                                       c: this.getColor(sx,sy),
-                                       p: this.getPiece(sx,sy)
-                               })
-                       ]
-               });
-
-               // The opponent piece disappears if we take it
-               if (this.board[ex][ey] != V.EMPTY)
-               {
-                       mv.vanish.push(
-                               new PiPo({
-                                       x: ex,
-                                       y: ey,
-                                       c: this.getColor(ex,ey),
-                                       p: this.getPiece(ex,ey)
-                               })
-                       );
-               }
-               return mv;
-       }
-
-       // Generic method to find possible moves of non-pawn pieces:
-       // "sliding or jumping"
-       getSlideNJumpMoves([x,y], steps, oneStep)
-       {
-               const color = this.getColor(x,y);
-               let moves = [];
-               outerLoop:
-               for (let step of steps)
-               {
-                       let i = x + step[0];
-                       let j = y + step[1];
-                       while (V.OnBoard(i,j) && this.board[i][j] == V.EMPTY)
-                       {
-                               moves.push(this.getBasicMove([x,y], [i,j]));
-                               if (oneStep !== undefined)
-                                       continue outerLoop;
-                               i += step[0];
-                               j += step[1];
-                       }
-                       if (V.OnBoard(i,j) && this.canTake([x,y], [i,j]))
-                               moves.push(this.getBasicMove([x,y], [i,j]));
-               }
-               return moves;
-       }
-
-       // What are the pawn moves from square x,y ?
-       getPotentialPawnMoves([x,y])
-       {
-               const color = this.turn;
-               let moves = [];
-               const [sizeX,sizeY] = [V.size.x,V.size.y];
-               const shiftX = (color == "w" ? -1 : 1);
-               const firstRank = (color == 'w' ? sizeX-1 : 0);
-               const startRank = (color == "w" ? sizeX-2 : 1);
-               const lastRank = (color == "w" ? 0 : sizeX-1);
-               const pawnColor = this.getColor(x,y); //can be different for checkered
-
-               // NOTE: next condition is generally true (no pawn on last rank)
-               if (x+shiftX >= 0 && x+shiftX < sizeX)
-               {
-                       const finalPieces = x + shiftX == lastRank
-                               ? [V.ROOK,V.KNIGHT,V.BISHOP,V.QUEEN]
-                               : [V.PAWN]
-                       // One square forward
-                       if (this.board[x+shiftX][y] == V.EMPTY)
-                       {
-                               for (let piece of finalPieces)
-                               {
-                                       moves.push(this.getBasicMove([x,y], [x+shiftX,y],
-                                               {c:pawnColor,p:piece}));
-                               }
-                               // Next condition because pawns on 1st rank can generally jump
-                               if ([startRank,firstRank].includes(x)
-                                       && this.board[x+2*shiftX][y] == V.EMPTY)
-                               {
-                                       // Two squares jump
-                                       moves.push(this.getBasicMove([x,y], [x+2*shiftX,y]));
-                               }
-                       }
-                       // Captures
-                       for (let shiftY of [-1,1])
-                       {
-                               if (y + shiftY >= 0 && y + shiftY < sizeY
-                                       && this.board[x+shiftX][y+shiftY] != V.EMPTY
-                                       && this.canTake([x,y], [x+shiftX,y+shiftY]))
-                               {
-                                       for (let piece of finalPieces)
-                                       {
-                                               moves.push(this.getBasicMove([x,y], [x+shiftX,y+shiftY],
-                                                       {c:pawnColor,p:piece}));
-                                       }
-                               }
-                       }
-               }
-
-               if (V.HasEnpassant)
-               {
-                       // En passant
-                       const Lep = this.epSquares.length;
-                       const epSquare = this.epSquares[Lep-1]; //always at least one element
-                       if (!!epSquare && epSquare.x == x+shiftX && Math.abs(epSquare.y - y) == 1)
-                       {
-                               let enpassantMove = this.getBasicMove([x,y], [epSquare.x,epSquare.y]);
-                               enpassantMove.vanish.push({
-                                       x: x,
-                                       y: epSquare.y,
-                                       p: 'p',
-                                       c: this.getColor(x,epSquare.y)
-                               });
-                               moves.push(enpassantMove);
-                       }
-               }
-
-               return moves;
-       }
-
-       // What are the rook moves from square x,y ?
-       getPotentialRookMoves(sq)
-       {
-               return this.getSlideNJumpMoves(sq, V.steps[V.ROOK]);
-       }
-
-       // What are the knight moves from square x,y ?
-       getPotentialKnightMoves(sq)
-       {
-               return this.getSlideNJumpMoves(sq, V.steps[V.KNIGHT], "oneStep");
-       }
-
-       // What are the bishop moves from square x,y ?
-       getPotentialBishopMoves(sq)
-       {
-               return this.getSlideNJumpMoves(sq, V.steps[V.BISHOP]);
-       }
-
-       // What are the queen moves from square x,y ?
-       getPotentialQueenMoves(sq)
-       {
-               return this.getSlideNJumpMoves(sq,
-                       V.steps[V.ROOK].concat(V.steps[V.BISHOP]));
-       }
-
-       // What are the king moves from square x,y ?
-       getPotentialKingMoves(sq)
-       {
-               // Initialize with normal moves
-               let moves = this.getSlideNJumpMoves(sq,
-                       V.steps[V.ROOK].concat(V.steps[V.BISHOP]), "oneStep");
-               return moves.concat(this.getCastleMoves(sq));
-       }
-
-       getCastleMoves([x,y])
-       {
-               const c = this.getColor(x,y);
-               if (x != (c=="w" ? V.size.x-1 : 0) || y != this.INIT_COL_KING[c])
-                       return []; //x isn't first rank, or king has moved (shortcut)
-
-               // Castling ?
-               const oppCol = V.GetOppCol(c);
-               let moves = [];
-               let i = 0;
-               const finalSquares = [ [2,3], [V.size.y-2,V.size.y-3] ]; //king, then rook
-               castlingCheck:
-               for (let castleSide=0; castleSide < 2; castleSide++) //large, then small
-               {
-                       if (!this.castleFlags[c][castleSide])
-                               continue;
-                       // If this code is reached, rooks and king are on initial position
-
-                       // Nothing on the path of the king ?
-                       // (And no checks; OK also if y==finalSquare)
-                       let step = finalSquares[castleSide][0] < y ? -1 : 1;
-                       for (i=y; i!=finalSquares[castleSide][0]; i+=step)
-                       {
-                               if (this.isAttacked([x,i], [oppCol]) || (this.board[x][i] != V.EMPTY &&
-                                       // NOTE: next check is enough, because of chessboard constraints
-                                       (this.getColor(x,i) != c
-                                               || ![V.KING,V.ROOK].includes(this.getPiece(x,i)))))
-                               {
-                                       continue castlingCheck;
-                               }
-                       }
-
-                       // Nothing on the path to the rook?
-                       step = castleSide == 0 ? -1 : 1;
-                       for (i = y + step; i != this.INIT_COL_ROOK[c][castleSide]; i += step)
-                       {
-                               if (this.board[x][i] != V.EMPTY)
-                                       continue castlingCheck;
-                       }
-                       const rookPos = this.INIT_COL_ROOK[c][castleSide];
-
-                       // Nothing on final squares, except maybe king and castling rook?
-                       for (i=0; i<2; i++)
-                       {
-                               if (this.board[x][finalSquares[castleSide][i]] != V.EMPTY &&
-                                       this.getPiece(x,finalSquares[castleSide][i]) != V.KING &&
-                                       finalSquares[castleSide][i] != rookPos)
-                               {
-                                       continue castlingCheck;
-                               }
-                       }
-
-                       // If this code is reached, castle is valid
-                       moves.push( new Move({
-                               appear: [
-                                       new PiPo({x:x,y:finalSquares[castleSide][0],p:V.KING,c:c}),
-                                       new PiPo({x:x,y:finalSquares[castleSide][1],p:V.ROOK,c:c})],
-                               vanish: [
-                                       new PiPo({x:x,y:y,p:V.KING,c:c}),
-                                       new PiPo({x:x,y:rookPos,p:V.ROOK,c:c})],
-                               end: Math.abs(y - rookPos) <= 2
-                                       ? {x:x, y:rookPos}
-                                       : {x:x, y:y + 2 * (castleSide==0 ? -1 : 1)}
-                       }) );
-               }
-
-               return moves;
-       }
-
-       ////////////////////
-       // MOVES VALIDATION
-
-       // For the interface: possible moves for the current turn from square sq
-       getPossibleMovesFrom(sq)
-       {
-               return this.filterValid( this.getPotentialMovesFrom(sq) );
-       }
-
-       // TODO: promotions (into R,B,N,Q) should be filtered only once
-       filterValid(moves)
-       {
-               if (moves.length == 0)
-                       return [];
-               const color = this.turn;
-               return moves.filter(m => {
-                       this.play(m);
-                       const res = !this.underCheck(color);
-                       this.undo(m);
-                       return res;
-               });
-       }
-
-       // Search for all valid moves considering current turn
-       // (for engine and game end)
-       getAllValidMoves()
-       {
-               const color = this.turn;
-               const oppCol = V.GetOppCol(color);
-               let potentialMoves = [];
-               for (let i=0; i<V.size.x; i++)
-               {
-                       for (let j=0; j<V.size.y; j++)
-                       {
-                               // Next condition "!= oppCol" to work with checkered variant
-                               if (this.board[i][j] != V.EMPTY && this.getColor(i,j) != oppCol)
-                               {
-                                       Array.prototype.push.apply(potentialMoves,
-                                               this.getPotentialMovesFrom([i,j]));
-                               }
-                       }
-               }
-               return this.filterValid(potentialMoves);
-       }
-
-       // Stop at the first move found
-       atLeastOneMove()
-       {
-               const color = this.turn;
-               const oppCol = V.GetOppCol(color);
-               for (let i=0; i<V.size.x; i++)
-               {
-                       for (let j=0; j<V.size.y; j++)
-                       {
-                               if (this.board[i][j] != V.EMPTY && this.getColor(i,j) != oppCol)
-                               {
-                                       const moves = this.getPotentialMovesFrom([i,j]);
-                                       if (moves.length > 0)
-                                       {
-                                               for (let k=0; k<moves.length; k++)
-                                               {
-                                                       if (this.filterValid([moves[k]]).length > 0)
-                                                               return true;
-                                               }
-                                       }
-                               }
-                       }
-               }
-               return false;
-       }
-
-       // Check if pieces of color in 'colors' are attacking (king) on square x,y
-       isAttacked(sq, colors)
-       {
-               return (this.isAttackedByPawn(sq, colors)
-                       || this.isAttackedByRook(sq, colors)
-                       || this.isAttackedByKnight(sq, colors)
-                       || this.isAttackedByBishop(sq, colors)
-                       || this.isAttackedByQueen(sq, colors)
-                       || this.isAttackedByKing(sq, colors));
-       }
-
-       // Is square x,y attacked by 'colors' pawns ?
-       isAttackedByPawn([x,y], colors)
-       {
-               for (let c of colors)
-               {
-                       let pawnShift = (c=="w" ? 1 : -1);
-                       if (x+pawnShift>=0 && x+pawnShift<V.size.x)
-                       {
-                               for (let i of [-1,1])
-                               {
-                                       if (y+i>=0 && y+i<V.size.y && this.getPiece(x+pawnShift,y+i)==V.PAWN
-                                               && this.getColor(x+pawnShift,y+i)==c)
-                                       {
-                                               return true;
-                                       }
-                               }
-                       }
-               }
-               return false;
-       }
-
-       // Is square x,y attacked by 'colors' rooks ?
-       isAttackedByRook(sq, colors)
-       {
-               return this.isAttackedBySlideNJump(sq, colors, V.ROOK, V.steps[V.ROOK]);
-       }
-
-       // Is square x,y attacked by 'colors' knights ?
-       isAttackedByKnight(sq, colors)
-       {
-               return this.isAttackedBySlideNJump(sq, colors,
-                       V.KNIGHT, V.steps[V.KNIGHT], "oneStep");
-       }
-
-       // Is square x,y attacked by 'colors' bishops ?
-       isAttackedByBishop(sq, colors)
-       {
-               return this.isAttackedBySlideNJump(sq, colors, V.BISHOP, V.steps[V.BISHOP]);
-       }
-
-       // Is square x,y attacked by 'colors' queens ?
-       isAttackedByQueen(sq, colors)
-       {
-               return this.isAttackedBySlideNJump(sq, colors, V.QUEEN,
-                       V.steps[V.ROOK].concat(V.steps[V.BISHOP]));
-       }
-
-       // Is square x,y attacked by 'colors' king(s) ?
-       isAttackedByKing(sq, colors)
-       {
-               return this.isAttackedBySlideNJump(sq, colors, V.KING,
-                       V.steps[V.ROOK].concat(V.steps[V.BISHOP]), "oneStep");
-       }
-
-       // Generic method for non-pawn pieces ("sliding or jumping"):
-       // is x,y attacked by a piece of color in array 'colors' ?
-       isAttackedBySlideNJump([x,y], colors, piece, steps, oneStep)
-       {
-               for (let step of steps)
-               {
-                       let rx = x+step[0], ry = y+step[1];
-                       while (V.OnBoard(rx,ry) && this.board[rx][ry] == V.EMPTY && !oneStep)
-                       {
-                               rx += step[0];
-                               ry += step[1];
-                       }
-                       if (V.OnBoard(rx,ry) && this.getPiece(rx,ry) === piece
-                               && colors.includes(this.getColor(rx,ry)))
-                       {
-                               return true;
-                       }
-               }
-               return false;
-       }
-
-       // Is color under check after his move ?
-       underCheck(color)
-       {
-               return this.isAttacked(this.kingPos[color], [V.GetOppCol(color)]);
-       }
-
-       /////////////////
-       // MOVES PLAYING
-
-       // Apply a move on board
-       static PlayOnBoard(board, move)
-       {
-               for (let psq of move.vanish)
-                       board[psq.x][psq.y] = V.EMPTY;
-               for (let psq of move.appear)
-                       board[psq.x][psq.y] = psq.c + psq.p;
-       }
-       // Un-apply the played move
-       static UndoOnBoard(board, move)
-       {
-               for (let psq of move.appear)
-                       board[psq.x][psq.y] = V.EMPTY;
-               for (let psq of move.vanish)
-                       board[psq.x][psq.y] = psq.c + psq.p;
-       }
-
-       // After move is played, update variables + flags
-       updateVariables(move)
-       {
-               let piece = undefined;
-               let c = undefined;
-               if (move.vanish.length >= 1)
-               {
-                       // Usual case, something is moved
-                       piece = move.vanish[0].p;
-                       c = move.vanish[0].c;
-               }
-               else
-               {
-                       // Crazyhouse-like variants
-                       piece = move.appear[0].p;
-                       c = move.appear[0].c;
-               }
-               if (c == "c") //if (!["w","b"].includes(c))
-               {
-                       // 'c = move.vanish[0].c' doesn't work for Checkered
-                       c = V.GetOppCol(this.turn);
-               }
-               const firstRank = (c == "w" ? V.size.x-1 : 0);
-
-               // Update king position + flags
-               if (piece == V.KING && move.appear.length > 0)
-               {
-                       this.kingPos[c][0] = move.appear[0].x;
-                       this.kingPos[c][1] = move.appear[0].y;
-                       if (V.HasFlags)
-                               this.castleFlags[c] = [false,false];
-                       return;
-               }
-               if (V.HasFlags)
-               {
-                       // Update castling flags if rooks are moved
-                       const oppCol = V.GetOppCol(c);
-                       const oppFirstRank = (V.size.x-1) - firstRank;
-                       if (move.start.x == firstRank //our rook moves?
-                               && this.INIT_COL_ROOK[c].includes(move.start.y))
-                       {
-                               const flagIdx = (move.start.y == this.INIT_COL_ROOK[c][0] ? 0 : 1);
-                               this.castleFlags[c][flagIdx] = false;
-                       }
-                       else if (move.end.x == oppFirstRank //we took opponent rook?
-                               && this.INIT_COL_ROOK[oppCol].includes(move.end.y))
-                       {
-                               const flagIdx = (move.end.y == this.INIT_COL_ROOK[oppCol][0] ? 0 : 1);
-                               this.castleFlags[oppCol][flagIdx] = false;
-                       }
-               }
-       }
-
-       // After move is undo-ed *and flags resetted*, un-update other variables
-       // TODO: more symmetry, by storing flags increment in move (?!)
-       unupdateVariables(move)
-       {
-               // (Potentially) Reset king position
-               const c = this.getColor(move.start.x,move.start.y);
-               if (this.getPiece(move.start.x,move.start.y) == V.KING)
-                       this.kingPos[c] = [move.start.x, move.start.y];
-       }
-
-       play(move)
-       {
-               // DEBUG:
-//             if (!this.states) this.states = [];
-//             const stateFen = this.getBaseFen() + this.getTurnFen() + this.getFlagsFen();
-//             this.states.push(stateFen);
-
-               if (V.HasFlags)
-                       move.flags = JSON.stringify(this.aggregateFlags()); //save flags (for undo)
-               if (V.HasEnpassant)
-                       this.epSquares.push( this.getEpSquare(move) );
-               if (!move.color)
-                       move.color = this.turn; //for interface
-               V.PlayOnBoard(this.board, move);
-               this.turn = V.GetOppCol(this.turn);
-               this.movesCount++;
-               this.updateVariables(move);
-       }
-
-       undo(move)
-       {
-               if (V.HasEnpassant)
-                       this.epSquares.pop();
-               if (V.HasFlags)
-                       this.disaggregateFlags(JSON.parse(move.flags));
-               V.UndoOnBoard(this.board, move);
-               this.turn = V.GetOppCol(this.turn);
-               this.movesCount--;
-               this.unupdateVariables(move);
-
-               // DEBUG:
-//             const stateFen = this.getBaseFen() + this.getTurnFen() + this.getFlagsFen();
-//             if (stateFen != this.states[this.states.length-1]) debugger;
-//             this.states.pop();
-       }
-
-       ///////////////
-       // END OF GAME
-
-       // What is the score ? (Interesting if game is over)
-       getCurrentScore()
-       {
-               if (this.atLeastOneMove()) // game not over
-                       return "*";
-
-               // Game over
-               const color = this.turn;
-               // No valid move: stalemate or checkmate?
-               if (!this.isAttacked(this.kingPos[color], [V.GetOppCol(color)]))
-                       return "1/2";
-               // OK, checkmate
-               return (color == "w" ? "0-1" : "1-0");
-       }
-
-       ///////////////
-       // ENGINE PLAY
-
-       // Pieces values
-       static get VALUES()
-       {
-               return {
-                       'p': 1,
-                       'r': 5,
-                       'n': 3,
-                       'b': 3,
-                       'q': 9,
-                       'k': 1000
-               };
-       }
-
-       // "Checkmate" (unreachable eval)
-       static get INFINITY() { return 9999; }
-
-       // At this value or above, the game is over
-       static get THRESHOLD_MATE() { return V.INFINITY; }
-
-       // Search depth: 2 for high branching factor, 4 for small (Loser chess, eg.)
-       static get SEARCH_DEPTH() { return 3; }
-
-       // Assumption: at least one legal move
-       // NOTE: works also for extinction chess because depth is 3...
-       getComputerMove()
-       {
-               const maxeval = V.INFINITY;
-               const color = this.turn;
-               // Some variants may show a bigger moves list to the human (Switching),
-               // thus the argument "computer" below (which is generally ignored)
-               let moves1 = this.getAllValidMoves("computer");
-
-               // Can I mate in 1 ? (for Magnetic & Extinction)
-               for (let i of shuffle(ArrayFun.range(moves1.length)))
-               {
-                       this.play(moves1[i]);
-                       let finish = (Math.abs(this.evalPosition()) >= V.THRESHOLD_MATE);
-                       if (!finish)
-                       {
-                               const score = this.getCurrentScore();
-                               if (["1-0","0-1"].includes(score))
-                                       finish = true;
-                       }
-                       this.undo(moves1[i]);
-                       if (finish)
-                               return moves1[i];
-               }
-
-               // Rank moves using a min-max at depth 2
-               for (let i=0; i<moves1.length; i++)
-               {
-                       // Initial self evaluation is very low: "I'm checkmated"
-                       moves1[i].eval = (color=="w" ? -1 : 1) * maxeval;
-                       this.play(moves1[i]);
-                       const score1 = this.getCurrentScore();
-                       let eval2 = undefined;
-                       if (score1 == "*")
-                       {
-                               // Initial enemy evaluation is very low too, for him
-                               eval2 = (color=="w" ? 1 : -1) * maxeval;
-                               // Second half-move:
-                               let moves2 = this.getAllValidMoves("computer");
-                               for (let j=0; j<moves2.length; j++)
-                               {
-                                       this.play(moves2[j]);
-                                       const score2 = this.getCurrentScore();
-                                       const evalPos = score2 == "*"
-                                               ? this.evalPosition()
-                                               : (score2=="1/2" ? 0 : (score2=="1-0" ? 1 : -1) * maxeval);
-                                       if ((color == "w" && evalPos < eval2)
-                                               || (color=="b" && evalPos > eval2))
-                                       {
-                                               eval2 = evalPos;
-                                       }
-                                       this.undo(moves2[j]);
-                               }
-                       }
-                       else
-                               eval2 = (score1=="1/2" ? 0 : (score1=="1-0" ? 1 : -1) * maxeval);
-                       if ((color=="w" && eval2 > moves1[i].eval)
-                               || (color=="b" && eval2 < moves1[i].eval))
-                       {
-                               moves1[i].eval = eval2;
-                       }
-                       this.undo(moves1[i]);
-               }
-               moves1.sort( (a,b) => { return (color=="w" ? 1 : -1) * (b.eval - a.eval); });
-
-               let candidates = [0]; //indices of candidates moves
-               for (let j=1; j<moves1.length && moves1[j].eval == moves1[0].eval; j++)
-                       candidates.push(j);
-               let currentBest = moves1[sample(candidates)];
-
-               // From here, depth >= 3: may take a while, so we control time
-               const timeStart = Date.now();
-
-               // Skip depth 3+ if we found a checkmate (or if we are checkmated in 1...)
-               if (V.SEARCH_DEPTH >= 3 && Math.abs(moves1[0].eval) < V.THRESHOLD_MATE)
-               {
-                       for (let i=0; i<moves1.length; i++)
-                       {
-                               if (Date.now()-timeStart >= 5000) //more than 5 seconds
-                                       return currentBest; //depth 2 at least
-                               this.play(moves1[i]);
-                               // 0.1 * oldEval : heuristic to avoid some bad moves (not all...)
-                               moves1[i].eval = 0.1*moves1[i].eval +
-                                       this.alphabeta(V.SEARCH_DEPTH-1, -maxeval, maxeval);
-                               this.undo(moves1[i]);
-                       }
-                       moves1.sort( (a,b) => {
-                               return (color=="w" ? 1 : -1) * (b.eval - a.eval); });
-               }
-               else
-                       return currentBest;
-//             console.log(moves1.map(m => { return [this.getNotation(m), m.eval]; }));
-
-               candidates = [0];
-               for (let j=1; j<moves1.length && moves1[j].eval == moves1[0].eval; j++)
-                       candidates.push(j);
-               return moves1[sample(candidates)];
-       }
-
-       alphabeta(depth, alpha, beta)
-  {
-               const maxeval = V.INFINITY;
-               const color = this.turn;
-               const score = this.getCurrentScore();
-               if (score != "*")
-                       return (score=="1/2" ? 0 : (score=="1-0" ? 1 : -1) * maxeval);
-               if (depth == 0)
+  //////////////
+  // MISC UTILS
+
+  static get HasFlags() { return true; } //some variants don't have flags
+
+  static get HasEnpassant() { return true; } //some variants don't have ep.
+
+  // Path to pieces
+  static getPpath(b)
+  {
+    return b; //usual pieces in pieces/ folder
+  }
+
+  // Turn "wb" into "B" (for FEN)
+  static board2fen(b)
+  {
+    return b[0]=='w' ? b[1].toUpperCase() : b[1];
+  }
+
+  // Turn "p" into "bp" (for board)
+  static fen2board(f)
+  {
+    return f.charCodeAt()<=90 ? "w"+f.toLowerCase() : "b"+f;
+  }
+
+  // Check if FEN describe a position
+  static IsGoodFen(fen)
+  {
+    const fenParsed = V.ParseFen(fen);
+    // 1) Check position
+    if (!V.IsGoodPosition(fenParsed.position))
+      return false;
+    // 2) Check turn
+    if (!fenParsed.turn || !V.IsGoodTurn(fenParsed.turn))
+      return false;
+    // 3) Check moves count
+    if (!fenParsed.movesCount || !(parseInt(fenParsed.movesCount) >= 0))
+      return false;
+    // 4) Check flags
+    if (V.HasFlags && (!fenParsed.flags || !V.IsGoodFlags(fenParsed.flags)))
+      return false;
+    // 5) Check enpassant
+    if (V.HasEnpassant &&
+      (!fenParsed.enpassant || !V.IsGoodEnpassant(fenParsed.enpassant)))
+    {
+      return false;
+    }
+    return true;
+  }
+
+  // Is position part of the FEN a priori correct?
+  static IsGoodPosition(position)
+  {
+    if (position.length == 0)
+      return false;
+    const rows = position.split("/");
+    if (rows.length != V.size.x)
+      return false;
+    for (let row of rows)
+    {
+      let sumElts = 0;
+      for (let i=0; i<row.length; i++)
+      {
+        if (V.PIECES.includes(row[i].toLowerCase()))
+          sumElts++;
+        else
+        {
+          const num = parseInt(row[i]);
+          if (isNaN(num))
+            return false;
+          sumElts += num;
+        }
+      }
+      if (sumElts != V.size.y)
+        return false;
+    }
+    return true;
+  }
+
+  // For FEN checking
+  static IsGoodTurn(turn)
+  {
+    return ["w","b"].includes(turn);
+  }
+
+  // For FEN checking
+  static IsGoodFlags(flags)
+  {
+    return !!flags.match(/^[01]{4,4}$/);
+  }
+
+  static IsGoodEnpassant(enpassant)
+  {
+    if (enpassant != "-")
+    {
+      const ep = V.SquareToCoords(fenParsed.enpassant);
+      if (isNaN(ep.x) || !V.OnBoard(ep))
+        return false;
+    }
+    return true;
+  }
+
+  // 3 --> d (column number to letter)
+  static CoordToColumn(colnum)
+  {
+    return String.fromCharCode(97 + colnum);
+  }
+
+  // d --> 3 (column letter to number)
+  static ColumnToCoord(column)
+  {
+    return column.charCodeAt(0) - 97;
+  }
+
+  // a4 --> {x:3,y:0}
+  static SquareToCoords(sq)
+  {
+    return {
+      // NOTE: column is always one char => max 26 columns
+      // row is counted from black side => subtraction
+      x: V.size.x - parseInt(sq.substr(1)),
+      y: sq[0].charCodeAt() - 97
+    };
+  }
+
+  // {x:0,y:4} --> e8
+  static CoordsToSquare(coords)
+  {
+    return V.CoordToColumn(coords.y) + (V.size.x - coords.x);
+  }
+
+  // Aggregates flags into one object
+  aggregateFlags()
+  {
+    return this.castleFlags;
+  }
+
+  // Reverse operation
+  disaggregateFlags(flags)
+  {
+    this.castleFlags = flags;
+  }
+
+  // En-passant square, if any
+  getEpSquare(moveOrSquare)
+  {
+    if (!moveOrSquare)
+      return undefined;
+    if (typeof moveOrSquare === "string")
+    {
+      const square = moveOrSquare;
+      if (square == "-")
+        return undefined;
+      return V.SquareToCoords(square);
+    }
+    // Argument is a move:
+    const move = moveOrSquare;
+    const [sx,sy,ex] = [move.start.x,move.start.y,move.end.x];
+    // TODO: next conditions are first for Atomic, and last for Checkered
+    if (move.appear.length > 0 && Math.abs(sx - ex) == 2
+      && move.appear[0].p == V.PAWN && ["w","b"].includes(move.appear[0].c))
+    {
+      return {
+        x: (sx + ex)/2,
+        y: sy
+      };
+    }
+    return undefined; //default
+  }
+
+  // Can thing on square1 take thing on square2
+  canTake([x1,y1], [x2,y2])
+  {
+    return this.getColor(x1,y1) !== this.getColor(x2,y2);
+  }
+
+  // Is (x,y) on the chessboard?
+  static OnBoard(x,y)
+  {
+    return (x>=0 && x<V.size.x && y>=0 && y<V.size.y);
+  }
+
+  // Used in interface: 'side' arg == player color
+  canIplay(side, [x,y])
+  {
+    return (this.turn == side && this.getColor(x,y) == side);
+  }
+
+  // On which squares is color under check ? (for interface)
+  getCheckSquares(color)
+  {
+    return this.isAttacked(this.kingPos[color], [V.GetOppCol(color)])
+      ? [JSON.parse(JSON.stringify(this.kingPos[color]))] //need to duplicate!
+      : [];
+  }
+
+  /////////////
+  // FEN UTILS
+
+  // Setup the initial random (assymetric) position
+  static GenRandInitFen()
+  {
+    let pieces = { "w": new Array(8), "b": new Array(8) };
+    // Shuffle pieces on first and last rank
+    for (let c of ["w","b"])
+    {
+      let positions = ArrayFun.range(8);
+
+      // Get random squares for bishops
+      let randIndex = 2 * random(4);
+      const bishop1Pos = positions[randIndex];
+      // The second bishop must be on a square of different color
+      let randIndex_tmp = 2 * random(4) + 1;
+      const bishop2Pos = positions[randIndex_tmp];
+      // Remove chosen squares
+      positions.splice(Math.max(randIndex,randIndex_tmp), 1);
+      positions.splice(Math.min(randIndex,randIndex_tmp), 1);
+
+      // Get random squares for knights
+      randIndex = random(6);
+      const knight1Pos = positions[randIndex];
+      positions.splice(randIndex, 1);
+      randIndex = random(5);
+      const knight2Pos = positions[randIndex];
+      positions.splice(randIndex, 1);
+
+      // Get random square for queen
+      randIndex = random(4);
+      const queenPos = positions[randIndex];
+      positions.splice(randIndex, 1);
+
+      // Rooks and king positions are now fixed,
+      // because of the ordering rook-king-rook
+      const rook1Pos = positions[0];
+      const kingPos = positions[1];
+      const rook2Pos = positions[2];
+
+      // Finally put the shuffled pieces in the board array
+      pieces[c][rook1Pos] = 'r';
+      pieces[c][knight1Pos] = 'n';
+      pieces[c][bishop1Pos] = 'b';
+      pieces[c][queenPos] = 'q';
+      pieces[c][kingPos] = 'k';
+      pieces[c][bishop2Pos] = 'b';
+      pieces[c][knight2Pos] = 'n';
+      pieces[c][rook2Pos] = 'r';
+    }
+    return pieces["b"].join("") +
+      "/pppppppp/8/8/8/8/PPPPPPPP/" +
+      pieces["w"].join("").toUpperCase() +
+      " w 0 1111 -"; //add turn + flags + enpassant
+  }
+
+  // "Parse" FEN: just return untransformed string data
+  static ParseFen(fen)
+  {
+    const fenParts = fen.split(" ");
+    let res =
+    {
+      position: fenParts[0],
+      turn: fenParts[1],
+      movesCount: fenParts[2],
+    };
+    let nextIdx = 3;
+    if (V.HasFlags)
+      Object.assign(res, {flags: fenParts[nextIdx++]});
+    if (V.HasEnpassant)
+      Object.assign(res, {enpassant: fenParts[nextIdx]});
+    return res;
+  }
+
+  // Return current fen (game state)
+  getFen()
+  {
+    return this.getBaseFen() + " " +
+      this.getTurnFen() + " " + this.movesCount +
+      (V.HasFlags ? (" " + this.getFlagsFen()) : "") +
+      (V.HasEnpassant ? (" " + this.getEnpassantFen()) : "");
+  }
+
+  // Position part of the FEN string
+  getBaseFen()
+  {
+    let position = "";
+    for (let i=0; i<V.size.x; i++)
+    {
+      let emptyCount = 0;
+      for (let j=0; j<V.size.y; j++)
+      {
+        if (this.board[i][j] == V.EMPTY)
+          emptyCount++;
+        else
+        {
+          if (emptyCount > 0)
+          {
+            // Add empty squares in-between
+            position += emptyCount;
+            emptyCount = 0;
+          }
+          position += V.board2fen(this.board[i][j]);
+        }
+      }
+      if (emptyCount > 0)
+      {
+        // "Flush remainder"
+        position += emptyCount;
+      }
+      if (i < V.size.x - 1)
+        position += "/"; //separate rows
+    }
+    return position;
+  }
+
+  getTurnFen()
+  {
+    return this.turn;
+  }
+
+  // Flags part of the FEN string
+  getFlagsFen()
+  {
+    let flags = "";
+    // Add castling flags
+    for (let i of ['w','b'])
+    {
+      for (let j=0; j<2; j++)
+        flags += (this.castleFlags[i][j] ? '1' : '0');
+    }
+    return flags;
+  }
+
+  // Enpassant part of the FEN string
+  getEnpassantFen()
+  {
+    const L = this.epSquares.length;
+    if (!this.epSquares[L-1])
+      return "-"; //no en-passant
+    return V.CoordsToSquare(this.epSquares[L-1]);
+  }
+
+  // Turn position fen into double array ["wb","wp","bk",...]
+  static GetBoard(position)
+  {
+    const rows = position.split("/");
+    let board = ArrayFun.init(V.size.x, V.size.y, "");
+    for (let i=0; i<rows.length; i++)
+    {
+      let j = 0;
+      for (let indexInRow = 0; indexInRow < rows[i].length; indexInRow++)
+      {
+        const character = rows[i][indexInRow];
+        const num = parseInt(character);
+        if (!isNaN(num))
+          j += num; //just shift j
+        else //something at position i,j
+          board[i][j++] = V.fen2board(character);
+      }
+    }
+    return board;
+  }
+
+  // Extract (relevant) flags from fen
+  setFlags(fenflags)
+  {
+    // white a-castle, h-castle, black a-castle, h-castle
+    this.castleFlags = {'w': [true,true], 'b': [true,true]};
+    if (!fenflags)
+      return;
+    for (let i=0; i<4; i++)
+      this.castleFlags[i < 2 ? 'w' : 'b'][i%2] = (fenflags.charAt(i) == '1');
+  }
+
+  //////////////////
+  // INITIALIZATION
+
+  // Fen string fully describes the game state
+  constructor(fen)
+  {
+    const fenParsed = V.ParseFen(fen);
+    this.board = V.GetBoard(fenParsed.position);
+    this.turn = fenParsed.turn[0]; //[0] to work with MarseilleRules
+    this.movesCount = parseInt(fenParsed.movesCount);
+    this.setOtherVariables(fen);
+  }
+
+  // Scan board for kings and rooks positions
+  scanKingsRooks(fen)
+  {
+    this.INIT_COL_KING = {'w':-1, 'b':-1};
+    this.INIT_COL_ROOK = {'w':[-1,-1], 'b':[-1,-1]};
+    this.kingPos = {'w':[-1,-1], 'b':[-1,-1]}; //squares of white and black king
+    const fenRows = V.ParseFen(fen).position.split("/");
+    for (let i=0; i<fenRows.length; i++)
+    {
+      let k = 0; //column index on board
+      for (let j=0; j<fenRows[i].length; j++)
+      {
+        switch (fenRows[i].charAt(j))
+        {
+          case 'k':
+            this.kingPos['b'] = [i,k];
+            this.INIT_COL_KING['b'] = k;
+            break;
+          case 'K':
+            this.kingPos['w'] = [i,k];
+            this.INIT_COL_KING['w'] = k;
+            break;
+          case 'r':
+            if (this.INIT_COL_ROOK['b'][0] < 0)
+              this.INIT_COL_ROOK['b'][0] = k;
+            else
+              this.INIT_COL_ROOK['b'][1] = k;
+            break;
+          case 'R':
+            if (this.INIT_COL_ROOK['w'][0] < 0)
+              this.INIT_COL_ROOK['w'][0] = k;
+            else
+              this.INIT_COL_ROOK['w'][1] = k;
+            break;
+          default:
+            const num = parseInt(fenRows[i].charAt(j));
+            if (!isNaN(num))
+              k += (num-1);
+        }
+        k++;
+      }
+    }
+  }
+
+  // Some additional variables from FEN (variant dependant)
+  setOtherVariables(fen)
+  {
+    // Set flags and enpassant:
+    const parsedFen = V.ParseFen(fen);
+    if (V.HasFlags)
+      this.setFlags(parsedFen.flags);
+    if (V.HasEnpassant)
+    {
+      const epSq = parsedFen.enpassant != "-"
+        ? V.SquareToCoords(parsedFen.enpassant)
+        : undefined;
+      this.epSquares = [ epSq ];
+    }
+    // Search for king and rooks positions:
+    this.scanKingsRooks(fen);
+  }
+
+  /////////////////////
+  // GETTERS & SETTERS
+
+  static get size()
+  {
+    return {x:8, y:8};
+  }
+
+  // Color of thing on suqare (i,j). 'undefined' if square is empty
+  getColor(i,j)
+  {
+    return this.board[i][j].charAt(0);
+  }
+
+  // Piece type on square (i,j). 'undefined' if square is empty
+  getPiece(i,j)
+  {
+    return this.board[i][j].charAt(1);
+  }
+
+  // Get opponent color
+  static GetOppCol(color)
+  {
+    return (color=="w" ? "b" : "w");
+  }
+
+  // Get next color (for compatibility with 3 and 4 players games)
+  static GetNextCol(color)
+  {
+    return V.GetOppCol(color);
+  }
+
+  // Pieces codes (for a clearer code)
+  static get PAWN() { return 'p'; }
+  static get ROOK() { return 'r'; }
+  static get KNIGHT() { return 'n'; }
+  static get BISHOP() { return 'b'; }
+  static get QUEEN() { return 'q'; }
+  static get KING() { return 'k'; }
+
+  // For FEN checking:
+  static get PIECES()
+  {
+    return [V.PAWN,V.ROOK,V.KNIGHT,V.BISHOP,V.QUEEN,V.KING];
+  }
+
+  // Empty square
+  static get EMPTY() { return ""; }
+
+  // Some pieces movements
+  static get steps()
+  {
+    return {
+      'r': [ [-1,0],[1,0],[0,-1],[0,1] ],
+      'n': [ [-1,-2],[-1,2],[1,-2],[1,2],[-2,-1],[-2,1],[2,-1],[2,1] ],
+      'b': [ [-1,-1],[-1,1],[1,-1],[1,1] ],
+    };
+  }
+
+  ////////////////////
+  // MOVES GENERATION
+
+  // All possible moves from selected square (assumption: color is OK)
+  getPotentialMovesFrom([x,y])
+  {
+    switch (this.getPiece(x,y))
+    {
+      case V.PAWN:
+        return this.getPotentialPawnMoves([x,y]);
+      case V.ROOK:
+        return this.getPotentialRookMoves([x,y]);
+      case V.KNIGHT:
+        return this.getPotentialKnightMoves([x,y]);
+      case V.BISHOP:
+        return this.getPotentialBishopMoves([x,y]);
+      case V.QUEEN:
+        return this.getPotentialQueenMoves([x,y]);
+      case V.KING:
+        return this.getPotentialKingMoves([x,y]);
+    }
+  }
+
+  // Build a regular move from its initial and destination squares.
+  // tr: transformation
+  getBasicMove([sx,sy], [ex,ey], tr)
+  {
+    let mv = new Move({
+      appear: [
+        new PiPo({
+          x: ex,
+          y: ey,
+          c: !!tr ? tr.c : this.getColor(sx,sy),
+          p: !!tr ? tr.p : this.getPiece(sx,sy)
+        })
+      ],
+      vanish: [
+        new PiPo({
+          x: sx,
+          y: sy,
+          c: this.getColor(sx,sy),
+          p: this.getPiece(sx,sy)
+        })
+      ]
+    });
+
+    // The opponent piece disappears if we take it
+    if (this.board[ex][ey] != V.EMPTY)
+    {
+      mv.vanish.push(
+        new PiPo({
+          x: ex,
+          y: ey,
+          c: this.getColor(ex,ey),
+          p: this.getPiece(ex,ey)
+        })
+      );
+    }
+    return mv;
+  }
+
+  // Generic method to find possible moves of non-pawn pieces:
+  // "sliding or jumping"
+  getSlideNJumpMoves([x,y], steps, oneStep)
+  {
+    const color = this.getColor(x,y);
+    let moves = [];
+    outerLoop:
+    for (let step of steps)
+    {
+      let i = x + step[0];
+      let j = y + step[1];
+      while (V.OnBoard(i,j) && this.board[i][j] == V.EMPTY)
+      {
+        moves.push(this.getBasicMove([x,y], [i,j]));
+        if (oneStep !== undefined)
+          continue outerLoop;
+        i += step[0];
+        j += step[1];
+      }
+      if (V.OnBoard(i,j) && this.canTake([x,y], [i,j]))
+        moves.push(this.getBasicMove([x,y], [i,j]));
+    }
+    return moves;
+  }
+
+  // What are the pawn moves from square x,y ?
+  getPotentialPawnMoves([x,y])
+  {
+    const color = this.turn;
+    let moves = [];
+    const [sizeX,sizeY] = [V.size.x,V.size.y];
+    const shiftX = (color == "w" ? -1 : 1);
+    const firstRank = (color == 'w' ? sizeX-1 : 0);
+    const startRank = (color == "w" ? sizeX-2 : 1);
+    const lastRank = (color == "w" ? 0 : sizeX-1);
+    const pawnColor = this.getColor(x,y); //can be different for checkered
+
+    // NOTE: next condition is generally true (no pawn on last rank)
+    if (x+shiftX >= 0 && x+shiftX < sizeX)
+    {
+      const finalPieces = x + shiftX == lastRank
+        ? [V.ROOK,V.KNIGHT,V.BISHOP,V.QUEEN]
+        : [V.PAWN]
+      // One square forward
+      if (this.board[x+shiftX][y] == V.EMPTY)
+      {
+        for (let piece of finalPieces)
+        {
+          moves.push(this.getBasicMove([x,y], [x+shiftX,y],
+            {c:pawnColor,p:piece}));
+        }
+        // Next condition because pawns on 1st rank can generally jump
+        if ([startRank,firstRank].includes(x)
+          && this.board[x+2*shiftX][y] == V.EMPTY)
+        {
+          // Two squares jump
+          moves.push(this.getBasicMove([x,y], [x+2*shiftX,y]));
+        }
+      }
+      // Captures
+      for (let shiftY of [-1,1])
+      {
+        if (y + shiftY >= 0 && y + shiftY < sizeY
+          && this.board[x+shiftX][y+shiftY] != V.EMPTY
+          && this.canTake([x,y], [x+shiftX,y+shiftY]))
+        {
+          for (let piece of finalPieces)
+          {
+            moves.push(this.getBasicMove([x,y], [x+shiftX,y+shiftY],
+              {c:pawnColor,p:piece}));
+          }
+        }
+      }
+    }
+
+    if (V.HasEnpassant)
+    {
+      // En passant
+      const Lep = this.epSquares.length;
+      const epSquare = this.epSquares[Lep-1]; //always at least one element
+      if (!!epSquare && epSquare.x == x+shiftX && Math.abs(epSquare.y - y) == 1)
+      {
+        let enpassantMove = this.getBasicMove([x,y], [epSquare.x,epSquare.y]);
+        enpassantMove.vanish.push({
+          x: x,
+          y: epSquare.y,
+          p: 'p',
+          c: this.getColor(x,epSquare.y)
+        });
+        moves.push(enpassantMove);
+      }
+    }
+
+    return moves;
+  }
+
+  // What are the rook moves from square x,y ?
+  getPotentialRookMoves(sq)
+  {
+    return this.getSlideNJumpMoves(sq, V.steps[V.ROOK]);
+  }
+
+  // What are the knight moves from square x,y ?
+  getPotentialKnightMoves(sq)
+  {
+    return this.getSlideNJumpMoves(sq, V.steps[V.KNIGHT], "oneStep");
+  }
+
+  // What are the bishop moves from square x,y ?
+  getPotentialBishopMoves(sq)
+  {
+    return this.getSlideNJumpMoves(sq, V.steps[V.BISHOP]);
+  }
+
+  // What are the queen moves from square x,y ?
+  getPotentialQueenMoves(sq)
+  {
+    return this.getSlideNJumpMoves(sq,
+      V.steps[V.ROOK].concat(V.steps[V.BISHOP]));
+  }
+
+  // What are the king moves from square x,y ?
+  getPotentialKingMoves(sq)
+  {
+    // Initialize with normal moves
+    let moves = this.getSlideNJumpMoves(sq,
+      V.steps[V.ROOK].concat(V.steps[V.BISHOP]), "oneStep");
+    return moves.concat(this.getCastleMoves(sq));
+  }
+
+  getCastleMoves([x,y])
+  {
+    const c = this.getColor(x,y);
+    if (x != (c=="w" ? V.size.x-1 : 0) || y != this.INIT_COL_KING[c])
+      return []; //x isn't first rank, or king has moved (shortcut)
+
+    // Castling ?
+    const oppCol = V.GetOppCol(c);
+    let moves = [];
+    let i = 0;
+    const finalSquares = [ [2,3], [V.size.y-2,V.size.y-3] ]; //king, then rook
+    castlingCheck:
+    for (let castleSide=0; castleSide < 2; castleSide++) //large, then small
+    {
+      if (!this.castleFlags[c][castleSide])
+        continue;
+      // If this code is reached, rooks and king are on initial position
+
+      // Nothing on the path of the king ?
+      // (And no checks; OK also if y==finalSquare)
+      let step = finalSquares[castleSide][0] < y ? -1 : 1;
+      for (i=y; i!=finalSquares[castleSide][0]; i+=step)
+      {
+        if (this.isAttacked([x,i], [oppCol]) || (this.board[x][i] != V.EMPTY &&
+          // NOTE: next check is enough, because of chessboard constraints
+          (this.getColor(x,i) != c
+            || ![V.KING,V.ROOK].includes(this.getPiece(x,i)))))
+        {
+          continue castlingCheck;
+        }
+      }
+
+      // Nothing on the path to the rook?
+      step = castleSide == 0 ? -1 : 1;
+      for (i = y + step; i != this.INIT_COL_ROOK[c][castleSide]; i += step)
+      {
+        if (this.board[x][i] != V.EMPTY)
+          continue castlingCheck;
+      }
+      const rookPos = this.INIT_COL_ROOK[c][castleSide];
+
+      // Nothing on final squares, except maybe king and castling rook?
+      for (i=0; i<2; i++)
+      {
+        if (this.board[x][finalSquares[castleSide][i]] != V.EMPTY &&
+          this.getPiece(x,finalSquares[castleSide][i]) != V.KING &&
+          finalSquares[castleSide][i] != rookPos)
+        {
+          continue castlingCheck;
+        }
+      }
+
+      // If this code is reached, castle is valid
+      moves.push( new Move({
+        appear: [
+          new PiPo({x:x,y:finalSquares[castleSide][0],p:V.KING,c:c}),
+          new PiPo({x:x,y:finalSquares[castleSide][1],p:V.ROOK,c:c})],
+        vanish: [
+          new PiPo({x:x,y:y,p:V.KING,c:c}),
+          new PiPo({x:x,y:rookPos,p:V.ROOK,c:c})],
+        end: Math.abs(y - rookPos) <= 2
+          ? {x:x, y:rookPos}
+          : {x:x, y:y + 2 * (castleSide==0 ? -1 : 1)}
+      }) );
+    }
+
+    return moves;
+  }
+
+  ////////////////////
+  // MOVES VALIDATION
+
+  // For the interface: possible moves for the current turn from square sq
+  getPossibleMovesFrom(sq)
+  {
+    return this.filterValid( this.getPotentialMovesFrom(sq) );
+  }
+
+  // TODO: promotions (into R,B,N,Q) should be filtered only once
+  filterValid(moves)
+  {
+    if (moves.length == 0)
+      return [];
+    const color = this.turn;
+    return moves.filter(m => {
+      this.play(m);
+      const res = !this.underCheck(color);
+      this.undo(m);
+      return res;
+    });
+  }
+
+  // Search for all valid moves considering current turn
+  // (for engine and game end)
+  getAllValidMoves()
+  {
+    const color = this.turn;
+    const oppCol = V.GetOppCol(color);
+    let potentialMoves = [];
+    for (let i=0; i<V.size.x; i++)
+    {
+      for (let j=0; j<V.size.y; j++)
+      {
+        // Next condition "!= oppCol" to work with checkered variant
+        if (this.board[i][j] != V.EMPTY && this.getColor(i,j) != oppCol)
+        {
+          Array.prototype.push.apply(potentialMoves,
+            this.getPotentialMovesFrom([i,j]));
+        }
+      }
+    }
+    return this.filterValid(potentialMoves);
+  }
+
+  // Stop at the first move found
+  atLeastOneMove()
+  {
+    const color = this.turn;
+    const oppCol = V.GetOppCol(color);
+    for (let i=0; i<V.size.x; i++)
+    {
+      for (let j=0; j<V.size.y; j++)
+      {
+        if (this.board[i][j] != V.EMPTY && this.getColor(i,j) != oppCol)
+        {
+          const moves = this.getPotentialMovesFrom([i,j]);
+          if (moves.length > 0)
+          {
+            for (let k=0; k<moves.length; k++)
+            {
+              if (this.filterValid([moves[k]]).length > 0)
+                return true;
+            }
+          }
+        }
+      }
+    }
+    return false;
+  }
+
+  // Check if pieces of color in 'colors' are attacking (king) on square x,y
+  isAttacked(sq, colors)
+  {
+    return (this.isAttackedByPawn(sq, colors)
+      || this.isAttackedByRook(sq, colors)
+      || this.isAttackedByKnight(sq, colors)
+      || this.isAttackedByBishop(sq, colors)
+      || this.isAttackedByQueen(sq, colors)
+      || this.isAttackedByKing(sq, colors));
+  }
+
+  // Is square x,y attacked by 'colors' pawns ?
+  isAttackedByPawn([x,y], colors)
+  {
+    for (let c of colors)
+    {
+      let pawnShift = (c=="w" ? 1 : -1);
+      if (x+pawnShift>=0 && x+pawnShift<V.size.x)
+      {
+        for (let i of [-1,1])
+        {
+          if (y+i>=0 && y+i<V.size.y && this.getPiece(x+pawnShift,y+i)==V.PAWN
+            && this.getColor(x+pawnShift,y+i)==c)
+          {
+            return true;
+          }
+        }
+      }
+    }
+    return false;
+  }
+
+  // Is square x,y attacked by 'colors' rooks ?
+  isAttackedByRook(sq, colors)
+  {
+    return this.isAttackedBySlideNJump(sq, colors, V.ROOK, V.steps[V.ROOK]);
+  }
+
+  // Is square x,y attacked by 'colors' knights ?
+  isAttackedByKnight(sq, colors)
+  {
+    return this.isAttackedBySlideNJump(sq, colors,
+      V.KNIGHT, V.steps[V.KNIGHT], "oneStep");
+  }
+
+  // Is square x,y attacked by 'colors' bishops ?
+  isAttackedByBishop(sq, colors)
+  {
+    return this.isAttackedBySlideNJump(sq, colors, V.BISHOP, V.steps[V.BISHOP]);
+  }
+
+  // Is square x,y attacked by 'colors' queens ?
+  isAttackedByQueen(sq, colors)
+  {
+    return this.isAttackedBySlideNJump(sq, colors, V.QUEEN,
+      V.steps[V.ROOK].concat(V.steps[V.BISHOP]));
+  }
+
+  // Is square x,y attacked by 'colors' king(s) ?
+  isAttackedByKing(sq, colors)
+  {
+    return this.isAttackedBySlideNJump(sq, colors, V.KING,
+      V.steps[V.ROOK].concat(V.steps[V.BISHOP]), "oneStep");
+  }
+
+  // Generic method for non-pawn pieces ("sliding or jumping"):
+  // is x,y attacked by a piece of color in array 'colors' ?
+  isAttackedBySlideNJump([x,y], colors, piece, steps, oneStep)
+  {
+    for (let step of steps)
+    {
+      let rx = x+step[0], ry = y+step[1];
+      while (V.OnBoard(rx,ry) && this.board[rx][ry] == V.EMPTY && !oneStep)
+      {
+        rx += step[0];
+        ry += step[1];
+      }
+      if (V.OnBoard(rx,ry) && this.getPiece(rx,ry) === piece
+        && colors.includes(this.getColor(rx,ry)))
+      {
+        return true;
+      }
+    }
+    return false;
+  }
+
+  // Is color under check after his move ?
+  underCheck(color)
+  {
+    return this.isAttacked(this.kingPos[color], [V.GetOppCol(color)]);
+  }
+
+  /////////////////
+  // MOVES PLAYING
+
+  // Apply a move on board
+  static PlayOnBoard(board, move)
+  {
+    for (let psq of move.vanish)
+      board[psq.x][psq.y] = V.EMPTY;
+    for (let psq of move.appear)
+      board[psq.x][psq.y] = psq.c + psq.p;
+  }
+  // Un-apply the played move
+  static UndoOnBoard(board, move)
+  {
+    for (let psq of move.appear)
+      board[psq.x][psq.y] = V.EMPTY;
+    for (let psq of move.vanish)
+      board[psq.x][psq.y] = psq.c + psq.p;
+  }
+
+  // After move is played, update variables + flags
+  updateVariables(move)
+  {
+    let piece = undefined;
+    let c = undefined;
+    if (move.vanish.length >= 1)
+    {
+      // Usual case, something is moved
+      piece = move.vanish[0].p;
+      c = move.vanish[0].c;
+    }
+    else
+    {
+      // Crazyhouse-like variants
+      piece = move.appear[0].p;
+      c = move.appear[0].c;
+    }
+    if (c == "c") //if (!["w","b"].includes(c))
+    {
+      // 'c = move.vanish[0].c' doesn't work for Checkered
+      c = V.GetOppCol(this.turn);
+    }
+    const firstRank = (c == "w" ? V.size.x-1 : 0);
+
+    // Update king position + flags
+    if (piece == V.KING && move.appear.length > 0)
+    {
+      this.kingPos[c][0] = move.appear[0].x;
+      this.kingPos[c][1] = move.appear[0].y;
+      if (V.HasFlags)
+        this.castleFlags[c] = [false,false];
+      return;
+    }
+    if (V.HasFlags)
+    {
+      // Update castling flags if rooks are moved
+      const oppCol = V.GetOppCol(c);
+      const oppFirstRank = (V.size.x-1) - firstRank;
+      if (move.start.x == firstRank //our rook moves?
+        && this.INIT_COL_ROOK[c].includes(move.start.y))
+      {
+        const flagIdx = (move.start.y == this.INIT_COL_ROOK[c][0] ? 0 : 1);
+        this.castleFlags[c][flagIdx] = false;
+      }
+      else if (move.end.x == oppFirstRank //we took opponent rook?
+        && this.INIT_COL_ROOK[oppCol].includes(move.end.y))
+      {
+        const flagIdx = (move.end.y == this.INIT_COL_ROOK[oppCol][0] ? 0 : 1);
+        this.castleFlags[oppCol][flagIdx] = false;
+      }
+    }
+  }
+
+  // After move is undo-ed *and flags resetted*, un-update other variables
+  // TODO: more symmetry, by storing flags increment in move (?!)
+  unupdateVariables(move)
+  {
+    // (Potentially) Reset king position
+    const c = this.getColor(move.start.x,move.start.y);
+    if (this.getPiece(move.start.x,move.start.y) == V.KING)
+      this.kingPos[c] = [move.start.x, move.start.y];
+  }
+
+  play(move)
+  {
+    // DEBUG:
+//    if (!this.states) this.states = [];
+//    const stateFen = this.getBaseFen() + this.getTurnFen() + this.getFlagsFen();
+//    this.states.push(stateFen);
+
+    if (V.HasFlags)
+      move.flags = JSON.stringify(this.aggregateFlags()); //save flags (for undo)
+    if (V.HasEnpassant)
+      this.epSquares.push( this.getEpSquare(move) );
+    if (!move.color)
+      move.color = this.turn; //for interface
+    V.PlayOnBoard(this.board, move);
+    this.turn = V.GetOppCol(this.turn);
+    this.movesCount++;
+    this.updateVariables(move);
+  }
+
+  undo(move)
+  {
+    if (V.HasEnpassant)
+      this.epSquares.pop();
+    if (V.HasFlags)
+      this.disaggregateFlags(JSON.parse(move.flags));
+    V.UndoOnBoard(this.board, move);
+    this.turn = V.GetOppCol(this.turn);
+    this.movesCount--;
+    this.unupdateVariables(move);
+
+    // DEBUG:
+//    const stateFen = this.getBaseFen() + this.getTurnFen() + this.getFlagsFen();
+//    if (stateFen != this.states[this.states.length-1]) debugger;
+//    this.states.pop();
+  }
+
+  ///////////////
+  // END OF GAME
+
+  // What is the score ? (Interesting if game is over)
+  getCurrentScore()
+  {
+    if (this.atLeastOneMove()) // game not over
+      return "*";
+
+    // Game over
+    const color = this.turn;
+    // No valid move: stalemate or checkmate?
+    if (!this.isAttacked(this.kingPos[color], [V.GetOppCol(color)]))
+      return "1/2";
+    // OK, checkmate
+    return (color == "w" ? "0-1" : "1-0");
+  }
+
+  ///////////////
+  // ENGINE PLAY
+
+  // Pieces values
+  static get VALUES()
+  {
+    return {
+      'p': 1,
+      'r': 5,
+      'n': 3,
+      'b': 3,
+      'q': 9,
+      'k': 1000
+    };
+  }
+
+  // "Checkmate" (unreachable eval)
+  static get INFINITY() { return 9999; }
+
+  // At this value or above, the game is over
+  static get THRESHOLD_MATE() { return V.INFINITY; }
+
+  // Search depth: 2 for high branching factor, 4 for small (Loser chess, eg.)
+  static get SEARCH_DEPTH() { return 3; }
+
+  // Assumption: at least one legal move
+  // NOTE: works also for extinction chess because depth is 3...
+  getComputerMove()
+  {
+    const maxeval = V.INFINITY;
+    const color = this.turn;
+    // Some variants may show a bigger moves list to the human (Switching),
+    // thus the argument "computer" below (which is generally ignored)
+    let moves1 = this.getAllValidMoves("computer");
+
+    // Can I mate in 1 ? (for Magnetic & Extinction)
+    for (let i of shuffle(ArrayFun.range(moves1.length)))
+    {
+      this.play(moves1[i]);
+      let finish = (Math.abs(this.evalPosition()) >= V.THRESHOLD_MATE);
+      if (!finish)
+      {
+        const score = this.getCurrentScore();
+        if (["1-0","0-1"].includes(score))
+          finish = true;
+      }
+      this.undo(moves1[i]);
+      if (finish)
+        return moves1[i];
+    }
+
+    // Rank moves using a min-max at depth 2
+    for (let i=0; i<moves1.length; i++)
+    {
+      // Initial self evaluation is very low: "I'm checkmated"
+      moves1[i].eval = (color=="w" ? -1 : 1) * maxeval;
+      this.play(moves1[i]);
+      const score1 = this.getCurrentScore();
+      let eval2 = undefined;
+      if (score1 == "*")
+      {
+        // Initial enemy evaluation is very low too, for him
+        eval2 = (color=="w" ? 1 : -1) * maxeval;
+        // Second half-move:
+        let moves2 = this.getAllValidMoves("computer");
+        for (let j=0; j<moves2.length; j++)
+        {
+          this.play(moves2[j]);
+          const score2 = this.getCurrentScore();
+          const evalPos = score2 == "*"
+            ? this.evalPosition()
+            : (score2=="1/2" ? 0 : (score2=="1-0" ? 1 : -1) * maxeval);
+          if ((color == "w" && evalPos < eval2)
+            || (color=="b" && evalPos > eval2))
+          {
+            eval2 = evalPos;
+          }
+          this.undo(moves2[j]);
+        }
+      }
+      else
+        eval2 = (score1=="1/2" ? 0 : (score1=="1-0" ? 1 : -1) * maxeval);
+      if ((color=="w" && eval2 > moves1[i].eval)
+        || (color=="b" && eval2 < moves1[i].eval))
+      {
+        moves1[i].eval = eval2;
+      }
+      this.undo(moves1[i]);
+    }
+    moves1.sort( (a,b) => { return (color=="w" ? 1 : -1) * (b.eval - a.eval); });
+
+    let candidates = [0]; //indices of candidates moves
+    for (let j=1; j<moves1.length && moves1[j].eval == moves1[0].eval; j++)
+      candidates.push(j);
+    let currentBest = moves1[sample(candidates)];
+
+    // From here, depth >= 3: may take a while, so we control time
+    const timeStart = Date.now();
+
+    // Skip depth 3+ if we found a checkmate (or if we are checkmated in 1...)
+    if (V.SEARCH_DEPTH >= 3 && Math.abs(moves1[0].eval) < V.THRESHOLD_MATE)
+    {
+      for (let i=0; i<moves1.length; i++)
+      {
+        if (Date.now()-timeStart >= 5000) //more than 5 seconds
+          return currentBest; //depth 2 at least
+        this.play(moves1[i]);
+        // 0.1 * oldEval : heuristic to avoid some bad moves (not all...)
+        moves1[i].eval = 0.1*moves1[i].eval +
+          this.alphabeta(V.SEARCH_DEPTH-1, -maxeval, maxeval);
+        this.undo(moves1[i]);
+      }
+      moves1.sort( (a,b) => {
+        return (color=="w" ? 1 : -1) * (b.eval - a.eval); });
+    }
+    else
+      return currentBest;
+//    console.log(moves1.map(m => { return [this.getNotation(m), m.eval]; }));
+
+    candidates = [0];
+    for (let j=1; j<moves1.length && moves1[j].eval == moves1[0].eval; j++)
+      candidates.push(j);
+    return moves1[sample(candidates)];
+  }
+
+  alphabeta(depth, alpha, beta)
+  {
+    const maxeval = V.INFINITY;
+    const color = this.turn;
+    const score = this.getCurrentScore();
+    if (score != "*")
+      return (score=="1/2" ? 0 : (score=="1-0" ? 1 : -1) * maxeval);
+    if (depth == 0)
       return this.evalPosition();
-               const moves = this.getAllValidMoves("computer");
+    const moves = this.getAllValidMoves("computer");
     let v = color=="w" ? -maxeval : maxeval;
-               if (color == "w")
-               {
-                       for (let i=0; i<moves.length; i++)
+    if (color == "w")
+    {
+      for (let i=0; i<moves.length; i++)
+      {
+        this.play(moves[i]);
+        v = Math.max(v, this.alphabeta(depth-1, alpha, beta));
+        this.undo(moves[i]);
+        alpha = Math.max(alpha, v);
+        if (alpha >= beta)
+          break; //beta cutoff
+      }
+    }
+    else //color=="b"
+    {
+      for (let i=0; i<moves.length; i++)
+      {
+        this.play(moves[i]);
+        v = Math.min(v, this.alphabeta(depth-1, alpha, beta));
+        this.undo(moves[i]);
+        beta = Math.min(beta, v);
+        if (alpha >= beta)
+          break; //alpha cutoff
+      }
+    }
+    return v;
+  }
+
+  evalPosition()
+  {
+    let evaluation = 0;
+    // Just count material for now
+    for (let i=0; i<V.size.x; i++)
+    {
+      for (let j=0; j<V.size.y; j++)
+      {
+        if (this.board[i][j] != V.EMPTY)
+        {
+          const sign = this.getColor(i,j) == "w" ? 1 : -1;
+          evaluation += sign * V.VALUES[this.getPiece(i,j)];
+        }
+      }
+    }
+    return evaluation;
+  }
+
+  /////////////////////////
+  // MOVES + GAME NOTATION
+  /////////////////////////
+
+  // Context: just before move is played, turn hasn't changed
+  // TODO: un-ambiguous notation (switch on piece type, check directions...)
+  getNotation(move)
+  {
+    if (move.appear.length == 2 && move.appear[0].p == V.KING) //castle
+      return (move.end.y < move.start.y ? "0-0-0" : "0-0");
+
+    // Translate final square
+    const finalSquare = V.CoordsToSquare(move.end);
+
+    const piece = this.getPiece(move.start.x, move.start.y);
+    if (piece == V.PAWN)
+    {
+      // Pawn move
+      let notation = "";
+      if (move.vanish.length > move.appear.length)
       {
-                               this.play(moves[i]);
-                               v = Math.max(v, this.alphabeta(depth-1, alpha, beta));
-                               this.undo(moves[i]);
-                               alpha = Math.max(alpha, v);
-                               if (alpha >= beta)
-                                       break; //beta cutoff
-                       }
-               }
-               else //color=="b"
-               {
-                       for (let i=0; i<moves.length; i++)
-                       {
-                               this.play(moves[i]);
-                               v = Math.min(v, this.alphabeta(depth-1, alpha, beta));
-                               this.undo(moves[i]);
-                               beta = Math.min(beta, v);
-                               if (alpha >= beta)
-                                       break; //alpha cutoff
-                       }
-               }
-               return v;
-       }
-
-       evalPosition()
-       {
-               let evaluation = 0;
-               // Just count material for now
-               for (let i=0; i<V.size.x; i++)
-               {
-                       for (let j=0; j<V.size.y; j++)
-                       {
-                               if (this.board[i][j] != V.EMPTY)
-                               {
-                                       const sign = this.getColor(i,j) == "w" ? 1 : -1;
-                                       evaluation += sign * V.VALUES[this.getPiece(i,j)];
-                               }
-                       }
-               }
-               return evaluation;
-       }
-
-       /////////////////////////
-       // MOVES + GAME NOTATION
-       /////////////////////////
-
-       // Context: just before move is played, turn hasn't changed
-       // TODO: un-ambiguous notation (switch on piece type, check directions...)
-       getNotation(move)
-       {
-               if (move.appear.length == 2 && move.appear[0].p == V.KING) //castle
-                       return (move.end.y < move.start.y ? "0-0-0" : "0-0");
-
-               // Translate final square
-               const finalSquare = V.CoordsToSquare(move.end);
-
-               const piece = this.getPiece(move.start.x, move.start.y);
-               if (piece == V.PAWN)
-               {
-                       // Pawn move
-                       let notation = "";
-                       if (move.vanish.length > move.appear.length)
-                       {
-                               // Capture
-                               const startColumn = V.CoordToColumn(move.start.y);
-                               notation = startColumn + "x" + finalSquare;
-                       }
-                       else //no capture
-                               notation = finalSquare;
-                       if (move.appear.length > 0 && move.appear[0].p != V.PAWN) //promotion
-                               notation += "=" + move.appear[0].p.toUpperCase();
-                       return notation;
-               }
-
-               else
-               {
-                       // Piece movement
-                       return piece.toUpperCase() +
-                               (move.vanish.length > move.appear.length ? "x" : "") + finalSquare;
-               }
-       }
+        // Capture
+        const startColumn = V.CoordToColumn(move.start.y);
+        notation = startColumn + "x" + finalSquare;
+      }
+      else //no capture
+        notation = finalSquare;
+      if (move.appear.length > 0 && move.appear[0].p != V.PAWN) //promotion
+        notation += "=" + move.appear[0].p.toUpperCase();
+      return notation;
+    }
+
+    else
+    {
+      // Piece movement
+      return piece.toUpperCase() +
+        (move.vanish.length > move.appear.length ? "x" : "") + finalSquare;
+    }
+  }
 }
index b3db07f..2070cd0 100644 (file)
@@ -75,6 +75,7 @@ export default {
       const vModule = await import("@/variants/" + this.vname + ".js");
       window.V = vModule.VariantRules;
       this.compWorker.postMessage(["scripts",this.vname]);
+      this.compWorker.postMessage(["init",this.fen]);
       this.newGameFromFen(this.fen);
     },
     newGameFromFen: function(fen) {
@@ -93,7 +94,7 @@ export default {
         this.mycolor = (Math.random() < 0.5 ? "w" : "b");
         this.orientation = this.mycolor;
         this.compWorker.postMessage(["init",fen]);
-        if (this.mycolor != "w" || this.subMode == "auto")
+        if (this.mycolor != "w" || this.mode == "auto")
           this.playComputerMove();
       }
     },
index ddaeba3..062eae3 100644 (file)
@@ -5,22 +5,22 @@
 //self.addEventListener('message', (e) =>
 onmessage = async function(e)
 {
-       switch (e.data[0])
-       {
-               case "scripts":
+  switch (e.data[0])
+  {
+    case "scripts":
       const vModule = await import("@/variants/" + e.data[1] + ".js");
-                       self.V = vModule.VariantRules;
-                       break;
-               case "init":
-                       const fen = e.data[1];
-                       self.vr = new self.V(fen);
-                       break;
-               case "newmove":
-                       self.vr.play(e.data[1]);
-                       break;
-               case "askmove":
-                       const compMove = self.vr.getComputerMove();
-                       postMessage(compMove);
-                       break;
-       }
+      self.V = vModule.VariantRules;
+      break;
+    case "init":
+      const fen = e.data[1];
+      self.vr = new self.V(fen);
+      break;
+    case "newmove":
+      self.vr.play(e.data[1]);
+      break;
+    case "askmove":
+      const compMove = self.vr.getComputerMove();
+      postMessage(compMove);
+      break;
+  }
 }
index 2feb8b8..e80e13b 100644 (file)
@@ -2,6 +2,7 @@ import { ChessRules } from "@/base_rules";
 import { ArrayFun} from "@/utils/array";
 
 // NOTE: alternative implementation, probably cleaner = use only 1 board
+// TODO? atLeastOneMove() would be more efficient if rewritten here (less sideBoard computations)
 export const VariantRules = class AliceRules extends ChessRules
 {
        static get ALICE_PIECES()
@@ -98,12 +99,14 @@ export const VariantRules = class AliceRules extends ChessRules
                const pieces = Object.keys(V.ALICE_CODES);
                const codes = Object.keys(V.ALICE_PIECES);
                const mirrorSide = (pieces.includes(this.getPiece(x,y)) ? 1 : 2);
+    if (!sideBoard)
+           sideBoard = [this.getSideBoard(1), this.getSideBoard(2)];
                const color = this.getColor(x,y);
 
                // Search valid moves on sideBoard
-               let saveBoard = this.board;
-               this.board = sideBoard || this.getSideBoard(mirrorSide);
-               let moves = super.getPotentialMovesFrom([x,y])
+               const saveBoard = this.board;
+               this.board = sideBoard[mirrorSide-1];
+               const moves = super.getPotentialMovesFrom([x,y])
                        .filter(m => {
                                // Filter out king moves which result in under-check position on
                                // current board (before mirror traversing)
@@ -111,7 +114,7 @@ export const VariantRules = class AliceRules extends ChessRules
                                if (m.appear[0].p == V.KING)
                                {
                                        this.play(m);
-                                       if (this.underCheck(color))
+                                       if (this.underCheck(color, sideBoard))
                                                aprioriValid = false;
                                        this.undo(m);
                                }
@@ -120,7 +123,7 @@ export const VariantRules = class AliceRules extends ChessRules
                this.board = saveBoard;
 
                // Finally filter impossible moves
-               let res = moves.filter(m => {
+               const res = moves.filter(m => {
                        if (m.appear.length == 2) //castle
                        {
                                // appear[i] must be an empty square on the other board
@@ -172,11 +175,12 @@ export const VariantRules = class AliceRules extends ChessRules
                return res;
        }
 
-       filterValid(moves)
+       filterValid(moves, sideBoard)
        {
                if (moves.length == 0)
                        return [];
-               let sideBoard = [this.getSideBoard(1), this.getSideBoard(2)];
+               if (!sideBoard)
+      sideBoard = [this.getSideBoard(1), this.getSideBoard(2)];
                const color = this.turn;
                return moves.filter(m => {
                        this.playSide(m, sideBoard); //no need to track flags
@@ -190,20 +194,16 @@ export const VariantRules = class AliceRules extends ChessRules
        {
                const color = this.turn;
                const oppCol = V.GetOppCol(color);
-               var potentialMoves = [];
-               let sideBoard = [this.getSideBoard(1), this.getSideBoard(2)];
+               let potentialMoves = [];
+               const sideBoard = [this.getSideBoard(1), this.getSideBoard(2)];
                for (var i=0; i<V.size.x; i++)
                {
                        for (var j=0; j<V.size.y; j++)
                        {
                                if (this.board[i][j] != V.EMPTY && this.getColor(i,j) == color)
                                {
-                                       const mirrorSide =
-                                               Object.keys(V.ALICE_CODES).includes(this.getPiece(i,j))
-                                                       ? 1
-                                                       : 2;
                                        Array.prototype.push.apply(potentialMoves,
-                                               this.getPotentialMovesFrom([i,j], sideBoard[mirrorSide-1]));
+                                               this.getPotentialMovesFrom([i,j], sideBoard));
                                }
                        }
                }
@@ -244,7 +244,8 @@ export const VariantRules = class AliceRules extends ChessRules
                });
        }
 
-       underCheck(color, sideBoard) //sideBoard arg always provided
+  // sideBoard: arg containing both boards (see getAllValidMoves())
+       underCheck(color, sideBoard)
        {
                const kp = this.kingPos[color];
                const mirrorSide = (sideBoard[0][kp[0]][kp[1]] != V.EMPTY ? 1 : 2);