Draft code reorganisation (+ fix Alice rules + stateless VariantRules object)
[vchess.git] / public / javascripts / base_rules.js
index 750cd2d..e405cba 100644 (file)
@@ -31,48 +31,403 @@ class Move
 // NOTE: x coords = top to bottom; y = left to right (from white player perspective)
 class ChessRules
 {
+       //////////////
+       // MISC UTILS
+
+       static get HasFlags() { return true; } //some variants don't have flags
+
+       static get HasEnpassant() { return true; } //some variants don't have ep.
+
        // Path to pieces
        static getPpath(b)
        {
                return b; //usual pieces in pieces/ folder
        }
+
        // Turn "wb" into "B" (for FEN)
        static board2fen(b)
        {
                return b[0]=='w' ? b[1].toUpperCase() : b[1];
        }
+
        // Turn "p" into "bp" (for board)
        static fen2board(f)
        {
                return f.charCodeAt()<=90 ? "w"+f.toLowerCase() : "b"+f;
        }
 
-       /////////////////
+       // Check if FEN describe a position
+       static IsGoodFen(fen)
+       {
+               const fenParsed = V.ParseFen(fen);
+               // 1) Check position
+               if (!V.IsGoodPosition(fenParsed.position))
+                       return false;
+               // 2) Check turn
+               if (!fenParsed.turn || !V.IsGoodTurn(fenParsed.turn))
+                       return false;
+               // 3) Check moves count
+               if (!fenParsed.movesCount || !(parseInt(fenParsed.movesCount) >= 0))
+                       return false;
+               // 4) Check flags
+               if (V.HasFlags && (!fenParsed.flags || !V.IsGoodFlags(fenParsed.flags)))
+                       return false;
+               // 5) Check enpassant
+               if (V.HasEnpassant &&
+                       (!fenParsed.enpassant || !V.IsGoodEnpassant(fenParsed.enpassant)))
+               {
+                       return false;
+               }
+               return true;
+       }
+
+       // Is position part of the FEN a priori correct?
+       static IsGoodPosition(position)
+       {
+               if (position.length == 0)
+                       return false;
+               const rows = position.split("/");
+               if (rows.length != V.size.x)
+                       return false;
+               for (let row of rows)
+               {
+                       let sumElts = 0;
+                       for (let i=0; i<row.length; i++)
+                       {
+                               if (V.PIECES.includes(row[i].toLowerCase()))
+                                       sumElts++;
+                               else
+                               {
+                                       const num = parseInt(row[i]);
+                                       if (isNaN(num))
+                                               return false;
+                                       sumElts += num;
+                               }
+                       }
+                       if (sumElts != V.size.y)
+                               return false;
+               }
+               return true;
+       }
+
+       // For FEN checking
+       static IsGoodTurn(turn)
+       {
+               return ["w","b"].includes(turn);
+       }
+
+       // For FEN checking
+       static IsGoodFlags(flags)
+       {
+               return !!flags.match(/^[01]{4,4}$/);
+       }
+
+       static IsGoodEnpassant(enpassant)
+       {
+               if (enpassant != "-")
+               {
+                       const ep = V.SquareToCoords(fenParsed.enpassant);
+                       if (isNaN(ep.x) || !V.OnBoard(ep))
+                               return false;
+               }
+               return true;
+       }
+
+       // 3 --> d (column number to letter)
+       static CoordToColumn(colnum)
+       {
+               return String.fromCharCode(97 + colnum);
+       }
+
+       // d --> 3 (column letter to number)
+       static ColumnToCoord(column)
+       {
+               return column.charCodeAt(0) - 97;
+       }
+
+       // a4 --> {x:3,y:0}
+       static SquareToCoords(sq)
+       {
+               return {
+                       // NOTE: column is always one char => max 26 columns
+                       // row is counted from black side => subtraction
+                       x: V.size.x - parseInt(sq.substr(1)),
+                       y: sq[0].charCodeAt() - 97
+               };
+       }
+
+       // {x:0,y:4} --> e8
+       static CoordsToSquare(coords)
+       {
+               return V.CoordToColumn(coords.y) + (V.size.x - coords.x);
+       }
+
+       // Aggregates flags into one object
+       aggregateFlags()
+       {
+               return this.castleFlags;
+       }
+
+       // Reverse operation
+       disaggregateFlags(flags)
+       {
+               this.castleFlags = flags;
+       }
+
+       // En-passant square, if any
+       getEpSquare(moveOrSquare)
+       {
+               if (!moveOrSquare)
+                       return undefined;
+               if (typeof moveOrSquare === "string")
+               {
+                       const square = moveOrSquare;
+                       if (square == "-")
+                               return undefined;
+                       return V.SquareToCoords(square);
+               }
+               // Argument is a move:
+               const move = moveOrSquare;
+               const [sx,sy,ex] = [move.start.x,move.start.y,move.end.x];
+               // TODO: next conditions are first for Atomic, and third for Checkered
+               if (move.appear.length > 0 && move.appear[0].p == V.PAWN && ["w","b"].includes(move.appear[0].c) && Math.abs(sx - ex) == 2)
+               {
+                       return {
+                               x: (sx + ex)/2,
+                               y: sy
+                       };
+               }
+               return undefined; //default
+       }
+
+       // Can thing on square1 take thing on square2
+       canTake([x1,y1], [x2,y2])
+       {
+               return this.getColor(x1,y1) !== this.getColor(x2,y2);
+       }
+
+       // Is (x,y) on the chessboard?
+       static OnBoard(x,y)
+       {
+               return (x>=0 && x<V.size.x && y>=0 && y<V.size.y);
+       }
+
+       // Used in interface: 'side' arg == player color
+       canIplay(side, [x,y])
+       {
+               return (this.turn == side && this.getColor(x,y) == side);
+       }
+
+       // On which squares is color under check ? (for interface)
+       getCheckSquares(color)
+       {
+               return this.isAttacked(this.kingPos[color], [this.getOppCol(color)])
+                       ? [JSON.parse(JSON.stringify(this.kingPos[color]))] //need to duplicate!
+                       : [];
+       }
+
+       /////////////
+       // FEN UTILS
+
+       // Setup the initial random (assymetric) position
+       static GenRandInitFen()
+       {
+               let pieces = { "w": new Array(8), "b": new Array(8) };
+               // Shuffle pieces on first and last rank
+               for (let c of ["w","b"])
+               {
+                       let positions = _.range(8);
+
+                       // Get random squares for bishops
+                       let randIndex = 2 * _.random(3);
+                       const bishop1Pos = positions[randIndex];
+                       // The second bishop must be on a square of different color
+                       let randIndex_tmp = 2 * _.random(3) + 1;
+                       const bishop2Pos = positions[randIndex_tmp];
+                       // Remove chosen squares
+                       positions.splice(Math.max(randIndex,randIndex_tmp), 1);
+                       positions.splice(Math.min(randIndex,randIndex_tmp), 1);
+
+                       // Get random squares for knights
+                       randIndex = _.random(5);
+                       const knight1Pos = positions[randIndex];
+                       positions.splice(randIndex, 1);
+                       randIndex = _.random(4);
+                       const knight2Pos = positions[randIndex];
+                       positions.splice(randIndex, 1);
+
+                       // Get random square for queen
+                       randIndex = _.random(3);
+                       const queenPos = positions[randIndex];
+                       positions.splice(randIndex, 1);
+
+                       // Rooks and king positions are now fixed,
+                       // because of the ordering rook-king-rook
+                       const rook1Pos = positions[0];
+                       const kingPos = positions[1];
+                       const rook2Pos = positions[2];
+
+                       // Finally put the shuffled pieces in the board array
+                       pieces[c][rook1Pos] = 'r';
+                       pieces[c][knight1Pos] = 'n';
+                       pieces[c][bishop1Pos] = 'b';
+                       pieces[c][queenPos] = 'q';
+                       pieces[c][kingPos] = 'k';
+                       pieces[c][bishop2Pos] = 'b';
+                       pieces[c][knight2Pos] = 'n';
+                       pieces[c][rook2Pos] = 'r';
+               }
+               return pieces["b"].join("") +
+                       "/pppppppp/8/8/8/8/PPPPPPPP/" +
+                       pieces["w"].join("").toUpperCase() +
+                       " w 1111 -"; //add turn + flags + enpassant
+       }
+
+       // "Parse" FEN: just return untransformed string data
+       static ParseFen(fen)
+       {
+               const fenParts = fen.split(" ");
+               let res =
+               {
+                       position: fenParts[0],
+                       turn: fenParts[1],
+                       movesCount: fenParts[2],
+               };
+               let nextIdx = 3;
+               if (V.HasFlags)
+                       Object.assign(res, {flags: fenParts[nextIdx++]});
+               if (V.HasEnpassant)
+                       Object.assign(res, {enpassant: fenParts[nextIdx]});
+               return res;
+       }
+
+       // Return current fen (game state)
+       getFen()
+       {
+               return this.getBaseFen() + " " +
+                       this.getTurnFen() + " " + this.movesCount +
+                       (V.HasFlags ? (" " + this.getFlagsFen()) : "") +
+                       (V.HasEnpassant ? (" " + this.getEnpassantFen()) : "");
+       }
+
+       // Position part of the FEN string
+       getBaseFen()
+       {
+               let position = "";
+               for (let i=0; i<V.size.x; i++)
+               {
+                       let emptyCount = 0;
+                       for (let j=0; j<V.size.y; j++)
+                       {
+                               if (this.board[i][j] == V.EMPTY)
+                                       emptyCount++;
+                               else
+                               {
+                                       if (emptyCount > 0)
+                                       {
+                                               // Add empty squares in-between
+                                               position += emptyCount;
+                                               emptyCount = 0;
+                                       }
+                                       position += V.board2fen(this.board[i][j]);
+                               }
+                       }
+                       if (emptyCount > 0)
+                       {
+                               // "Flush remainder"
+                               position += emptyCount;
+                       }
+                       if (i < V.size.x - 1)
+                               position += "/"; //separate rows
+               }
+               return position;
+       }
+
+       getTurnFen()
+       {
+               return this.turn;
+       }
+
+       // Flags part of the FEN string
+       getFlagsFen()
+       {
+               let flags = "";
+               // Add castling flags
+               for (let i of ['w','b'])
+               {
+                       for (let j=0; j<2; j++)
+                               flags += (this.castleFlags[i][j] ? '1' : '0');
+               }
+               return flags;
+       }
+
+       // Enpassant part of the FEN string
+       getEnpassantFen()
+       {
+               const L = this.epSquares.length;
+               if (!this.epSquares[L-1])
+                       return "-"; //no en-passant
+               return V.CoordsToSquare(this.epSquares[L-1]);
+       }
+
+       // Turn position fen into double array ["wb","wp","bk",...]
+       static GetBoard(position)
+       {
+               const rows = position.split("/");
+               let board = doubleArray(V.size.x, V.size.y, "");
+               for (let i=0; i<rows.length; i++)
+               {
+                       let j = 0;
+                       for (let indexInRow = 0; indexInRow < rows[i].length; indexInRow++)
+                       {
+                               const character = rows[i][indexInRow];
+                               const num = parseInt(character);
+                               if (!isNaN(num))
+                                       j += num; //just shift j
+                               else //something at position i,j
+                                       board[i][j++] = V.fen2board(character);
+                       }
+               }
+               return board;
+       }
+
+       // Extract (relevant) flags from fen
+       setFlags(fenflags)
+       {
+               // white a-castle, h-castle, black a-castle, h-castle
+               this.castleFlags = {'w': [true,true], 'b': [true,true]};
+               if (!fenflags)
+                       return;
+               for (let i=0; i<4; i++)
+                       this.castleFlags[i < 2 ? 'w' : 'b'][i%2] = (fenflags.charAt(i) == '1');
+       }
+
+       //////////////////
        // INITIALIZATION
 
-       // fen == "position flags"
-       constructor(fen, moves)
+       // Fen string fully describes the game state
+       constructor(fen)
        {
-               this.moves = moves;
-               // Use fen string to initialize variables, flags and board
-               this.board = VariantRules.GetBoard(fen);
-               this.setFlags(fen);
-               this.initVariables(fen);
+               const fenParsed = V.ParseFen(fen);
+               this.board = V.GetBoard(fenParsed.position);
+               this.turn = fenParsed.turn[0]; //[0] to work with MarseilleRules
+               this.movesCount = parseInt(fenParsed.movesCount);
+               this.setOtherVariables(fen);
        }
 
-       initVariables(fen)
+       // Scan board for kings and rooks positions
+       scanKingsRooks(fen)
        {
                this.INIT_COL_KING = {'w':-1, 'b':-1};
                this.INIT_COL_ROOK = {'w':[-1,-1], 'b':[-1,-1]};
                this.kingPos = {'w':[-1,-1], 'b':[-1,-1]}; //squares of white and black king
-               const fenParts = fen.split(" ");
-               const position = fenParts[0].split("/");
-               for (let i=0; i<position.length; i++)
+               const fenRows = V.ParseFen(fen).position.split("/");
+               for (let i=0; i<fenRows.length; i++)
                {
                        let k = 0; //column index on board
-                       for (let j=0; j<position[i].length; j++)
+                       for (let j=0; j<fenRows[i].length; j++)
                        {
-                               switch (position[i].charAt(j))
+                               switch (fenRows[i].charAt(j))
                                {
                                        case 'k':
                                                this.kingPos['b'] = [i,k];
@@ -95,69 +450,60 @@ class ChessRules
                                                        this.INIT_COL_ROOK['w'][1] = k;
                                                break;
                                        default:
-                                               let num = parseInt(position[i].charAt(j));
+                                               const num = parseInt(fenRows[i].charAt(j));
                                                if (!isNaN(num))
                                                        k += (num-1);
                                }
                                k++;
                        }
                }
-               const epSq = this.moves.length > 0 ? this.getEpSquare(this.lastMove) : undefined;
-               this.epSquares = [ epSq ];
        }
 
-       // Turn diagram fen into double array ["wb","wp","bk",...]
-       static GetBoard(fen)
+       // Some additional variables from FEN (variant dependant)
+       setOtherVariables(fen)
        {
-               let rows = fen.split(" ")[0].split("/");
-               const [sizeX,sizeY] = VariantRules.size;
-               let board = doubleArray(sizeX, sizeY, "");
-               for (let i=0; i<rows.length; i++)
+               // Set flags and enpassant:
+               const parsedFen = V.ParseFen(fen);
+               if (V.HasFlags)
+                       this.setFlags(parsedFen.flags);
+               if (V.HasEnpassant)
                {
-                       let j = 0;
-                       for (let indexInRow = 0; indexInRow < rows[i].length; indexInRow++)
-                       {
-                               let character = rows[i][indexInRow];
-                               let num = parseInt(character);
-                               if (!isNaN(num))
-                                       j += num; //just shift j
-                               else //something at position i,j
-                                       board[i][j++] = VariantRules.fen2board(character);
-                       }
+                       const epSq = parsedFen.enpassant != "-"
+                               ? V.SquareToCoords(parsedFen.enpassant)
+                               : undefined;
+                       this.epSquares = [ epSq ];
                }
-               return board;
+               // Search for king and rooks positions:
+               this.scanKingsRooks(fen);
        }
 
-       // Extract (relevant) flags from fen
-       setFlags(fen)
+       /////////////////////
+       // GETTERS & SETTERS
+
+       static get size()
        {
-               // white a-castle, h-castle, black a-castle, h-castle
-               this.castleFlags = {'w': new Array(2), 'b': new Array(2)};
-               let flags = fen.split(" ")[1]; //flags right after position
-               for (let i=0; i<4; i++)
-                       this.castleFlags[i < 2 ? 'w' : 'b'][i%2] = (flags.charAt(i) == '1');
+               return {x:8, y:8};
        }
 
-       ///////////////////
-       // GETTERS, SETTERS
-
-       static get size() { return [8,8]; }
-       // Two next functions return 'undefined' if called on empty square
-       getColor(i,j) { return this.board[i][j].charAt(0); }
-       getPiece(i,j) { return this.board[i][j].charAt(1); }
-
-       // Color
-       getOppCol(color) { return color=="w" ? "b" : "w"; }
+       // Color of thing on suqare (i,j). 'undefined' if square is empty
+       getColor(i,j)
+       {
+               return this.board[i][j].charAt(0);
+       }
 
-       get lastMove() {
-               const L = this.moves.length;
-               return L>0 ? this.moves[L-1] : null;
+       // Piece type on square (i,j). 'undefined' if square is empty
+       getPiece(i,j)
+       {
+               return this.board[i][j].charAt(1);
        }
-       get turn() {
-               return this.moves.length%2==0 ? 'w' : 'b';
+
+       // Get opponent color
+       getOppCol(color)
+       {
+               return (color=="w" ? "b" : "w");
        }
 
-       // Pieces codes
+       // Pieces codes (for a clearer code)
        static get PAWN() { return 'p'; }
        static get ROOK() { return 'r'; }
        static get KNIGHT() { return 'n'; }
@@ -165,11 +511,18 @@ class ChessRules
        static get QUEEN() { return 'q'; }
        static get KING() { return 'k'; }
 
+       // For FEN checking:
+       static get PIECES()
+       {
+               return [V.PAWN,V.ROOK,V.KNIGHT,V.BISHOP,V.QUEEN,V.KING];
+       }
+
        // Empty square
-       static get EMPTY() { return ''; }
+       static get EMPTY() { return ""; }
 
        // Some pieces movements
-       static get steps() {
+       static get steps()
+       {
                return {
                        'r': [ [-1,0],[1,0],[0,-1],[0,1] ],
                        'n': [ [-1,-2],[-1,2],[1,-2],[1,2],[-2,-1],[-2,1],[2,-1],[2,1] ],
@@ -177,38 +530,7 @@ class ChessRules
                };
        }
 
-       // Aggregates flags into one object
-       get flags() {
-               return this.castleFlags;
-       }
-
-       // Reverse operation
-       parseFlags(flags)
-       {
-               this.castleFlags = flags;
-       }
-
-       // En-passant square, if any
-       getEpSquare(move)
-       {
-               const [sx,sy,ex] = [move.start.x,move.start.y,move.end.x];
-               if (this.getPiece(sx,sy) == VariantRules.PAWN && Math.abs(sx - ex) == 2)
-               {
-                       return {
-                               x: (sx + ex)/2,
-                               y: sy
-                       };
-               }
-               return undefined; //default
-       }
-
-       // Can thing on square1 take thing on square2
-       canTake([x1,y1], [x2,y2])
-       {
-               return this.getColor(x1,y1) != this.getColor(x2,y2);
-       }
-
-       ///////////////////
+       ////////////////////
        // MOVES GENERATION
 
        // All possible moves from selected square (assumption: color is OK)
@@ -216,22 +538,23 @@ class ChessRules
        {
                switch (this.getPiece(x,y))
                {
-                       case VariantRules.PAWN:
+                       case V.PAWN:
                                return this.getPotentialPawnMoves([x,y]);
-                       case VariantRules.ROOK:
+                       case V.ROOK:
                                return this.getPotentialRookMoves([x,y]);
-                       case VariantRules.KNIGHT:
+                       case V.KNIGHT:
                                return this.getPotentialKnightMoves([x,y]);
-                       case VariantRules.BISHOP:
+                       case V.BISHOP:
                                return this.getPotentialBishopMoves([x,y]);
-                       case VariantRules.QUEEN:
+                       case V.QUEEN:
                                return this.getPotentialQueenMoves([x,y]);
-                       case VariantRules.KING:
+                       case V.KING:
                                return this.getPotentialKingMoves([x,y]);
                }
        }
 
-       // Build a regular move from its initial and destination squares; tr: transformation
+       // Build a regular move from its initial and destination squares.
+       // tr: transformation
        getBasicMove([sx,sy], [ex,ey], tr)
        {
                let mv = new Move({
@@ -254,7 +577,7 @@ class ChessRules
                });
 
                // The opponent piece disappears if we take it
-               if (this.board[ex][ey] != VariantRules.EMPTY)
+               if (this.board[ex][ey] != V.EMPTY)
                {
                        mv.vanish.push(
                                new PiPo({
@@ -268,19 +591,18 @@ class ChessRules
                return mv;
        }
 
-       // Generic method to find possible moves of non-pawn pieces ("sliding or jumping")
+       // Generic method to find possible moves of non-pawn pieces:
+       // "sliding or jumping"
        getSlideNJumpMoves([x,y], steps, oneStep)
        {
                const color = this.getColor(x,y);
                let moves = [];
-               const [sizeX,sizeY] = VariantRules.size;
                outerLoop:
                for (let step of steps)
                {
                        let i = x + step[0];
                        let j = y + step[1];
-                       while (i>=0 && i<sizeX && j>=0 && j<sizeY
-                               && this.board[i][j] == VariantRules.EMPTY)
+                       while (V.OnBoard(i,j) && this.board[i][j] == V.EMPTY)
                        {
                                moves.push(this.getBasicMove([x,y], [i,j]));
                                if (oneStep !== undefined)
@@ -288,7 +610,7 @@ class ChessRules
                                i += step[0];
                                j += step[1];
                        }
-                       if (i>=0 && i<sizeX && j>=0 && j<sizeY && this.canTake([x,y], [i,j]))
+                       if (V.OnBoard(i,j) && this.canTake([x,y], [i,j]))
                                moves.push(this.getBasicMove([x,y], [i,j]));
                }
                return moves;
@@ -299,76 +621,67 @@ class ChessRules
        {
                const color = this.turn;
                let moves = [];
-               const V = VariantRules;
-               const [sizeX,sizeY] = V.size;
-               const shift = (color == "w" ? -1 : 1);
+               const [sizeX,sizeY] = [V.size.x,V.size.y];
+               const shiftX = (color == "w" ? -1 : 1);
                const firstRank = (color == 'w' ? sizeX-1 : 0);
                const startRank = (color == "w" ? sizeX-2 : 1);
                const lastRank = (color == "w" ? 0 : sizeX-1);
+               const pawnColor = this.getColor(x,y); //can be different for checkered
 
-               if (x+shift >= 0 && x+shift < sizeX && x+shift != lastRank)
+               // NOTE: next condition is generally true (no pawn on last rank)
+               if (x+shiftX >= 0 && x+shiftX < sizeX)
                {
-                       // Normal moves
-                       if (this.board[x+shift][y] == V.EMPTY)
+                       const finalPieces = x + shiftX == lastRank
+                               ? [V.ROOK,V.KNIGHT,V.BISHOP,V.QUEEN]
+                               : [V.PAWN]
+                       // One square forward
+                       if (this.board[x+shiftX][y] == V.EMPTY)
                        {
-                               moves.push(this.getBasicMove([x,y], [x+shift,y]));
-                               // Next condition because variants with pawns on 1st rank allow them to jump
-                               if ([startRank,firstRank].includes(x) && this.board[x+2*shift][y] == V.EMPTY)
+                               for (let piece of finalPieces)
+                               {
+                                       moves.push(this.getBasicMove([x,y], [x+shiftX,y],
+                                               {c:pawnColor,p:piece}));
+                               }
+                               // Next condition because pawns on 1st rank can generally jump
+                               if ([startRank,firstRank].includes(x)
+                                       && this.board[x+2*shiftX][y] == V.EMPTY)
                                {
                                        // Two squares jump
-                                       moves.push(this.getBasicMove([x,y], [x+2*shift,y]));
+                                       moves.push(this.getBasicMove([x,y], [x+2*shiftX,y]));
                                }
                        }
                        // Captures
-                       if (y>0 && this.canTake([x,y], [x+shift,y-1])
-                               && this.board[x+shift][y-1] != V.EMPTY)
-                       {
-                               moves.push(this.getBasicMove([x,y], [x+shift,y-1]));
-                       }
-                       if (y<sizeY-1 && this.canTake([x,y], [x+shift,y+1])
-                               && this.board[x+shift][y+1] != V.EMPTY)
+                       for (let shiftY of [-1,1])
                        {
-                               moves.push(this.getBasicMove([x,y], [x+shift,y+1]));
-                       }
-               }
-
-               if (x+shift == lastRank)
-               {
-                       // Promotion
-                       const pawnColor = this.getColor(x,y); //can be different for checkered
-                       let promotionPieces = [V.ROOK,V.KNIGHT,V.BISHOP,V.QUEEN];
-                       promotionPieces.forEach(p => {
-                               // Normal move
-                               if (this.board[x+shift][y] == V.EMPTY)
-                                       moves.push(this.getBasicMove([x,y], [x+shift,y], {c:pawnColor,p:p}));
-                               // Captures
-                               if (y>0 && this.canTake([x,y], [x+shift,y-1])
-                                       && this.board[x+shift][y-1] != V.EMPTY)
-                               {
-                                       moves.push(this.getBasicMove([x,y], [x+shift,y-1], {c:pawnColor,p:p}));
-                               }
-                               if (y<sizeY-1 && this.canTake([x,y], [x+shift,y+1])
-                                       && this.board[x+shift][y+1] != V.EMPTY)
+                               if (y + shiftY >= 0 && y + shiftY < sizeY
+                                       && this.board[x+shiftX][y+shiftY] != V.EMPTY
+                                       && this.canTake([x,y], [x+shiftX,y+shiftY]))
                                {
-                                       moves.push(this.getBasicMove([x,y], [x+shift,y+1], {c:pawnColor,p:p}));
+                                       for (let piece of finalPieces)
+                                       {
+                                               moves.push(this.getBasicMove([x,y], [x+shiftX,y+shiftY],
+                                                       {c:pawnColor,p:piece}));
+                                       }
                                }
-                       });
+                       }
                }
 
-               // En passant
-               const Lep = this.epSquares.length;
-               const epSquare = Lep>0 ? this.epSquares[Lep-1] : undefined;
-               if (!!epSquare && epSquare.x == x+shift && Math.abs(epSquare.y - y) == 1)
+               if (V.HasEnpassant)
                {
-                       let epStep = epSquare.y - y;
-                       var enpassantMove = this.getBasicMove([x,y], [x+shift,y+epStep]);
-                       enpassantMove.vanish.push({
-                               x: x,
-                               y: y+epStep,
-                               p: 'p',
-                               c: this.getColor(x,y+epStep)
-                       });
-                       moves.push(enpassantMove);
+                       // En passant
+                       const Lep = this.epSquares.length;
+                       const epSquare = this.epSquares[Lep-1]; //always at least one element
+                       if (!!epSquare && epSquare.x == x+shiftX && Math.abs(epSquare.y - y) == 1)
+                       {
+                               let enpassantMove = this.getBasicMove([x,y], [epSquare.x,epSquare.y]);
+                               enpassantMove.vanish.push({
+                                       x: x,
+                                       y: epSquare.y,
+                                       p: 'p',
+                                       c: this.getColor(x,epSquare.y)
+                               });
+                               moves.push(enpassantMove);
+                       }
                }
 
                return moves;
@@ -377,33 +690,31 @@ class ChessRules
        // What are the rook moves from square x,y ?
        getPotentialRookMoves(sq)
        {
-               return this.getSlideNJumpMoves(sq, VariantRules.steps[VariantRules.ROOK]);
+               return this.getSlideNJumpMoves(sq, V.steps[V.ROOK]);
        }
 
        // What are the knight moves from square x,y ?
        getPotentialKnightMoves(sq)
        {
-               return this.getSlideNJumpMoves(
-                       sq, VariantRules.steps[VariantRules.KNIGHT], "oneStep");
+               return this.getSlideNJumpMoves(sq, V.steps[V.KNIGHT], "oneStep");
        }
 
        // What are the bishop moves from square x,y ?
        getPotentialBishopMoves(sq)
        {
-               return this.getSlideNJumpMoves(sq, VariantRules.steps[VariantRules.BISHOP]);
+               return this.getSlideNJumpMoves(sq, V.steps[V.BISHOP]);
        }
 
        // What are the queen moves from square x,y ?
        getPotentialQueenMoves(sq)
        {
-               const V = VariantRules;
-               return this.getSlideNJumpMoves(sq, V.steps[V.ROOK].concat(V.steps[V.BISHOP]));
+               return this.getSlideNJumpMoves(sq,
+                       V.steps[V.ROOK].concat(V.steps[V.BISHOP]));
        }
 
        // What are the king moves from square x,y ?
        getPotentialKingMoves(sq)
        {
-               const V = VariantRules;
                // Initialize with normal moves
                let moves = this.getSlideNJumpMoves(sq,
                        V.steps[V.ROOK].concat(V.steps[V.BISHOP]), "oneStep");
@@ -413,17 +724,14 @@ class ChessRules
        getCastleMoves([x,y])
        {
                const c = this.getColor(x,y);
-               const [sizeX,sizeY] = VariantRules.size;
-               if (x != (c=="w" ? sizeX-1 : 0) || y != this.INIT_COL_KING[c])
+               if (x != (c=="w" ? V.size.x-1 : 0) || y != this.INIT_COL_KING[c])
                        return []; //x isn't first rank, or king has moved (shortcut)
 
-               const V = VariantRules;
-
                // Castling ?
                const oppCol = this.getOppCol(c);
                let moves = [];
                let i = 0;
-               const finalSquares = [ [2,3], [sizeY-2,sizeY-3] ]; //king, then rook
+               const finalSquares = [ [2,3], [V.size.y-2,V.size.y-3] ]; //king, then rook
                castlingCheck:
                for (let castleSide=0; castleSide < 2; castleSide++) //large, then small
                {
@@ -431,13 +739,15 @@ class ChessRules
                                continue;
                        // If this code is reached, rooks and king are on initial position
 
-                       // Nothing on the path of the king (and no checks; OK also if y==finalSquare)?
+                       // Nothing on the path of the king ?
+                       // (And no checks; OK also if y==finalSquare)
                        let step = finalSquares[castleSide][0] < y ? -1 : 1;
                        for (i=y; i!=finalSquares[castleSide][0]; i+=step)
                        {
                                if (this.isAttacked([x,i], [oppCol]) || (this.board[x][i] != V.EMPTY &&
                                        // NOTE: next check is enough, because of chessboard constraints
-                                       (this.getColor(x,i) != c || ![V.KING,V.ROOK].includes(this.getPiece(x,i)))))
+                                       (this.getColor(x,i) != c
+                                               || ![V.KING,V.ROOK].includes(this.getPiece(x,i)))))
                                {
                                        continue castlingCheck;
                                }
@@ -480,19 +790,12 @@ class ChessRules
                return moves;
        }
 
-       ///////////////////
+       ////////////////////
        // MOVES VALIDATION
 
-       canIplay(side, [x,y])
-       {
-               return ((side=='w' && this.moves.length%2==0)
-                               || (side=='b' && this.moves.length%2==1))
-                       && this.getColor(x,y) == side;
-       }
-
+       // For the interface: possible moves for the current turn from square sq
        getPossibleMovesFrom(sq)
        {
-               // Assuming color is right (already checked)
                return this.filterValid( this.getPotentialMovesFrom(sq) );
        }
 
@@ -501,27 +804,34 @@ class ChessRules
        {
                if (moves.length == 0)
                        return [];
-               return moves.filter(m => { return !this.underCheck(m); });
+               const color = this.turn;
+               return moves.filter(m => {
+                       this.play(m);
+                       const res = !this.underCheck(color);
+                       this.undo(m);
+                       return res;
+               });
        }
 
-       // Search for all valid moves considering current turn (for engine and game end)
+       // Search for all valid moves considering current turn
+       // (for engine and game end)
        getAllValidMoves()
        {
                const color = this.turn;
                const oppCol = this.getOppCol(color);
                let potentialMoves = [];
-               const [sizeX,sizeY] = VariantRules.size;
-               for (let i=0; i<sizeX; i++)
+               for (let i=0; i<V.size.x; i++)
                {
-                       for (let j=0; j<sizeY; j++)
+                       for (let j=0; j<V.size.y; j++)
                        {
-                               // Next condition "!= oppCol" = harmless hack to work with checkered variant
-                               if (this.board[i][j] != VariantRules.EMPTY && this.getColor(i,j) != oppCol)
-                                       Array.prototype.push.apply(potentialMoves, this.getPotentialMovesFrom([i,j]));
+                               // Next condition "!= oppCol" to work with checkered variant
+                               if (this.board[i][j] != V.EMPTY && this.getColor(i,j) != oppCol)
+                               {
+                                       Array.prototype.push.apply(potentialMoves,
+                                               this.getPotentialMovesFrom([i,j]));
+                               }
                        }
                }
-               // NOTE: prefer lazy undercheck tests, letting the king being taken?
-               // No: if happen on last 1/2 move, could lead to forbidden moves, wrong evals
                return this.filterValid(potentialMoves);
        }
 
@@ -530,12 +840,11 @@ class ChessRules
        {
                const color = this.turn;
                const oppCol = this.getOppCol(color);
-               const [sizeX,sizeY] = VariantRules.size;
-               for (let i=0; i<sizeX; i++)
+               for (let i=0; i<V.size.x; i++)
                {
-                       for (let j=0; j<sizeY; j++)
+                       for (let j=0; j<V.size.y; j++)
                        {
-                               if (this.board[i][j] != VariantRules.EMPTY && this.getColor(i,j) != oppCol)
+                               if (this.board[i][j] != V.EMPTY && this.getColor(i,j) != oppCol)
                                {
                                        const moves = this.getPotentialMovesFrom([i,j]);
                                        if (moves.length > 0)
@@ -552,7 +861,7 @@ class ChessRules
                return false;
        }
 
-       // Check if pieces of color in array 'colors' are attacking square x,y
+       // Check if pieces of color in 'colors' are attacking (king) on square x,y
        isAttacked(sq, colors)
        {
                return (this.isAttackedByPawn(sq, colors)
@@ -566,15 +875,14 @@ class ChessRules
        // Is square x,y attacked by 'colors' pawns ?
        isAttackedByPawn([x,y], colors)
        {
-               const [sizeX,sizeY] = VariantRules.size;
                for (let c of colors)
                {
                        let pawnShift = (c=="w" ? 1 : -1);
-                       if (x+pawnShift>=0 && x+pawnShift<sizeX)
+                       if (x+pawnShift>=0 && x+pawnShift<V.size.x)
                        {
                                for (let i of [-1,1])
                                {
-                                       if (y+i>=0 && y+i<sizeY && this.getPiece(x+pawnShift,y+i)==VariantRules.PAWN
+                                       if (y+i>=0 && y+i<V.size.y && this.getPiece(x+pawnShift,y+i)==V.PAWN
                                                && this.getColor(x+pawnShift,y+i)==c)
                                        {
                                                return true;
@@ -588,28 +896,25 @@ class ChessRules
        // Is square x,y attacked by 'colors' rooks ?
        isAttackedByRook(sq, colors)
        {
-               return this.isAttackedBySlideNJump(sq, colors,
-                       VariantRules.ROOK, VariantRules.steps[VariantRules.ROOK]);
+               return this.isAttackedBySlideNJump(sq, colors, V.ROOK, V.steps[V.ROOK]);
        }
 
        // Is square x,y attacked by 'colors' knights ?
        isAttackedByKnight(sq, colors)
        {
                return this.isAttackedBySlideNJump(sq, colors,
-                       VariantRules.KNIGHT, VariantRules.steps[VariantRules.KNIGHT], "oneStep");
+                       V.KNIGHT, V.steps[V.KNIGHT], "oneStep");
        }
 
        // Is square x,y attacked by 'colors' bishops ?
        isAttackedByBishop(sq, colors)
        {
-               return this.isAttackedBySlideNJump(sq, colors,
-                       VariantRules.BISHOP, VariantRules.steps[VariantRules.BISHOP]);
+               return this.isAttackedBySlideNJump(sq, colors, V.BISHOP, V.steps[V.BISHOP]);
        }
 
        // Is square x,y attacked by 'colors' queens ?
        isAttackedByQueen(sq, colors)
        {
-               const V = VariantRules;
                return this.isAttackedBySlideNJump(sq, colors, V.QUEEN,
                        V.steps[V.ROOK].concat(V.steps[V.BISHOP]));
        }
@@ -617,7 +922,6 @@ class ChessRules
        // Is square x,y attacked by 'colors' king(s) ?
        isAttackedByKing(sq, colors)
        {
-               const V = VariantRules;
                return this.isAttackedBySlideNJump(sq, colors, V.KING,
                        V.steps[V.ROOK].concat(V.steps[V.BISHOP]), "oneStep");
        }
@@ -626,19 +930,16 @@ class ChessRules
        // is x,y attacked by a piece of color in array 'colors' ?
        isAttackedBySlideNJump([x,y], colors, piece, steps, oneStep)
        {
-               const [sizeX,sizeY] = VariantRules.size;
                for (let step of steps)
                {
                        let rx = x+step[0], ry = y+step[1];
-                       while (rx>=0 && rx<sizeX && ry>=0 && ry<sizeY
-                               && this.board[rx][ry] == VariantRules.EMPTY && !oneStep)
+                       while (V.OnBoard(rx,ry) && this.board[rx][ry] == V.EMPTY && !oneStep)
                        {
                                rx += step[0];
                                ry += step[1];
                        }
-                       if (rx>=0 && rx<sizeX && ry>=0 && ry<sizeY
-                               && this.board[rx][ry] != VariantRules.EMPTY
-                               && this.getPiece(rx,ry) == piece && colors.includes(this.getColor(rx,ry)))
+                       if (V.OnBoard(rx,ry) && this.getPiece(rx,ry) === piece
+                               && colors.includes(this.getColor(rx,ry)))
                        {
                                return true;
                        }
@@ -646,33 +947,20 @@ class ChessRules
                return false;
        }
 
-       // Is current player under check after his move ?
-       underCheck(move)
+       // Is color under check after his move ?
+       underCheck(color)
        {
-               const color = this.turn;
-               this.play(move);
-               let res = this.isAttacked(this.kingPos[color], [this.getOppCol(color)]);
-               this.undo(move);
-               return res;
+               return this.isAttacked(this.kingPos[color], [this.getOppCol(color)]);
        }
 
-       // On which squares is opponent under check after our move ?
-       getCheckSquares(move)
-       {
-               this.play(move);
-               const color = this.turn; //opponent
-               let res = this.isAttacked(this.kingPos[color], [this.getOppCol(color)])
-                       ? [ JSON.parse(JSON.stringify(this.kingPos[color])) ] //need to duplicate!
-                       : [ ];
-               this.undo(move);
-               return res;
-       }
+       /////////////////
+       // MOVES PLAYING
 
        // Apply a move on board
        static PlayOnBoard(board, move)
        {
                for (let psq of move.vanish)
-                       board[psq.x][psq.y] = VariantRules.EMPTY;
+                       board[psq.x][psq.y] = V.EMPTY;
                for (let psq of move.appear)
                        board[psq.x][psq.y] = psq.c + psq.p;
        }
@@ -680,101 +968,122 @@ class ChessRules
        static UndoOnBoard(board, move)
        {
                for (let psq of move.appear)
-                       board[psq.x][psq.y] = VariantRules.EMPTY;
+                       board[psq.x][psq.y] = V.EMPTY;
                for (let psq of move.vanish)
                        board[psq.x][psq.y] = psq.c + psq.p;
        }
 
-       // Before move is played, update variables + flags
+       // After move is played, update variables + flags
        updateVariables(move)
        {
-               const piece = this.getPiece(move.start.x,move.start.y);
-               const c = this.getColor(move.start.x,move.start.y);
-               const [sizeX,sizeY] = VariantRules.size;
-               const firstRank = (c == "w" ? sizeX-1 : 0);
+               let piece = undefined;
+               let c = undefined;
+               if (move.vanish.length >= 1)
+               {
+                       // Usual case, something is moved
+                       piece = move.vanish[0].p;
+                       c = move.vanish[0].c;
+               }
+               else
+               {
+                       // Crazyhouse-like variants
+                       piece = move.appear[0].p;
+                       c = move.appear[0].c;
+               }
+               if (c == "c") //if (!["w","b"].includes(c))
+               {
+                       // 'c = move.vanish[0].c' doesn't work for Checkered
+                       c = this.getOppCol(this.turn);
+               }
+               const firstRank = (c == "w" ? V.size.x-1 : 0);
 
                // Update king position + flags
-               if (piece == VariantRules.KING && move.appear.length > 0)
+               if (piece == V.KING && move.appear.length > 0)
                {
                        this.kingPos[c][0] = move.appear[0].x;
                        this.kingPos[c][1] = move.appear[0].y;
-                       this.castleFlags[c] = [false,false];
+                       if (V.HasFlags)
+                               this.castleFlags[c] = [false,false];
                        return;
                }
-               const oppCol = this.getOppCol(c);
-               const oppFirstRank = (sizeX-1) - firstRank;
-               if (move.start.x == firstRank //our rook moves?
-                       && this.INIT_COL_ROOK[c].includes(move.start.y))
-               {
-                       const flagIdx = (move.start.y == this.INIT_COL_ROOK[c][0] ? 0 : 1);
-                       this.castleFlags[c][flagIdx] = false;
-               }
-               else if (move.end.x == oppFirstRank //we took opponent rook?
-                       && this.INIT_COL_ROOK[oppCol].includes(move.end.y))
+               if (V.HasFlags)
                {
-                       const flagIdx = (move.end.y == this.INIT_COL_ROOK[oppCol][0] ? 0 : 1);
-                       this.castleFlags[oppCol][flagIdx] = false;
+                       // Update castling flags if rooks are moved
+                       const oppCol = this.getOppCol(c);
+                       const oppFirstRank = (V.size.x-1) - firstRank;
+                       if (move.start.x == firstRank //our rook moves?
+                               && this.INIT_COL_ROOK[c].includes(move.start.y))
+                       {
+                               const flagIdx = (move.start.y == this.INIT_COL_ROOK[c][0] ? 0 : 1);
+                               this.castleFlags[c][flagIdx] = false;
+                       }
+                       else if (move.end.x == oppFirstRank //we took opponent rook?
+                               && this.INIT_COL_ROOK[oppCol].includes(move.end.y))
+                       {
+                               const flagIdx = (move.end.y == this.INIT_COL_ROOK[oppCol][0] ? 0 : 1);
+                               this.castleFlags[oppCol][flagIdx] = false;
+                       }
                }
        }
 
-       // After move is undo-ed, un-update variables (flags are reset)
-       // TODO: more symmetry, by storing flags increment in move...
+       // After move is undo-ed *and flags resetted*, un-update other variables
+       // TODO: more symmetry, by storing flags increment in move (?!)
        unupdateVariables(move)
        {
                // (Potentially) Reset king position
                const c = this.getColor(move.start.x,move.start.y);
-               if (this.getPiece(move.start.x,move.start.y) == VariantRules.KING)
+               if (this.getPiece(move.start.x,move.start.y) == V.KING)
                        this.kingPos[c] = [move.start.x, move.start.y];
        }
 
        play(move, ingame)
        {
-               if (!!ingame)
-                       move.notation = [this.getNotation(move), this.getLongNotation(move)];
+               // DEBUG:
+//             if (!this.states) this.states = [];
+//             if (!ingame) this.states.push(this.getFen());
 
-               move.flags = JSON.stringify(this.flags); //save flags (for undo)
+               if (!!ingame)
+                       move.notation = this.getNotation(move);
+
+               if (V.HasFlags)
+                       move.flags = JSON.stringify(this.aggregateFlags()); //save flags (for undo)
+               if (V.HasEnpassant)
+                       this.epSquares.push( this.getEpSquare(move) );
+               V.PlayOnBoard(this.board, move);
+               this.turn = this.getOppCol(this.turn);
+               this.movesCount++;
                this.updateVariables(move);
-               this.moves.push(move);
-               this.epSquares.push( this.getEpSquare(move) );
-               VariantRules.PlayOnBoard(this.board, move);
+
+               if (!!ingame)
+               {
+                       // Hash of current game state *after move*, to detect repetitions
+                       move.hash = hex_md5(this.getFen());
+               }
        }
 
        undo(move)
        {
-               VariantRules.UndoOnBoard(this.board, move);
-               this.epSquares.pop();
-               this.moves.pop();
+               if (V.HasEnpassant)
+                       this.epSquares.pop();
+               if (V.HasFlags)
+                       this.disaggregateFlags(JSON.parse(move.flags));
+               V.UndoOnBoard(this.board, move);
+               this.turn = this.getOppCol(this.turn);
+               this.movesCount--;
                this.unupdateVariables(move);
-               this.parseFlags(JSON.parse(move.flags));
+
+               // DEBUG:
+//             if (this.getFen() != this.states[this.states.length-1])
+//                     debugger;
+//             this.states.pop();
        }
 
-       //////////////
+       ///////////////
        // END OF GAME
 
-       // Basic check for 3 repetitions (in the last moves only)
-       // TODO: extend to usual 3-repetition recognition (storing FEN with move?)
-       checkRepetition()
-       {
-               if (this.moves.length >= 8)
-               {
-                       const L = this.moves.length;
-                       if (_.isEqual(this.moves[L-1], this.moves[L-5]) &&
-                               _.isEqual(this.moves[L-2], this.moves[L-6]) &&
-                               _.isEqual(this.moves[L-3], this.moves[L-7]) &&
-                               _.isEqual(this.moves[L-4], this.moves[L-8]))
-                       {
-                               return true;
-                       }
-               }
-               return false;
-       }
-
        // Is game over ? And if yes, what is the score ?
        checkGameOver()
        {
-               if (this.checkRepetition())
-                       return "1/2";
-
                if (this.atLeastOneMove()) // game not over
                        return "*";
 
@@ -790,14 +1099,15 @@ class ChessRules
                if (!this.isAttacked(this.kingPos[color], [this.getOppCol(color)]))
                        return "1/2";
                // OK, checkmate
-               return color == "w" ? "0-1" : "1-0";
+               return (color == "w" ? "0-1" : "1-0");
        }
 
-       ////////
-       //ENGINE
+       ///////////////
+       // ENGINE PLAY
 
        // Pieces values
-       static get VALUES() {
+       static get VALUES()
+       {
                return {
                        'p': 1,
                        'r': 5,
@@ -808,24 +1118,20 @@ class ChessRules
                };
        }
 
-       static get INFINITY() {
-               return 9999; //"checkmate" (unreachable eval)
-       }
+       // "Checkmate" (unreachable eval)
+       static get INFINITY() { return 9999; }
 
-       static get THRESHOLD_MATE() {
-               // At this value or above, the game is over
-               return VariantRules.INFINITY;
-       }
+       // At this value or above, the game is over
+       static get THRESHOLD_MATE() { return V.INFINITY; }
 
-       static get SEARCH_DEPTH() {
-               return 3; //2 for high branching factor, 4 for small (Loser chess)
-       }
+       // Search depth: 2 for high branching factor, 4 for small (Loser chess, eg.)
+       static get SEARCH_DEPTH() { return 3; }
 
        // Assumption: at least one legal move
        // NOTE: works also for extinction chess because depth is 3...
        getComputerMove()
        {
-               const maxeval = VariantRules.INFINITY;
+               const maxeval = V.INFINITY;
                const color = this.turn;
                // Some variants may show a bigger moves list to the human (Switching),
                // thus the argument "computer" below (which is generally ignored)
@@ -835,7 +1141,14 @@ class ChessRules
                for (let i of _.shuffle(_.range(moves1.length)))
                {
                        this.play(moves1[i]);
-                       const finish = (Math.abs(this.evalPosition()) >= VariantRules.THRESHOLD_MATE);
+                       let finish = (Math.abs(this.evalPosition()) >= V.THRESHOLD_MATE);
+                       if (!finish && !this.atLeastOneMove())
+                       {
+                               // Test mate (for other variants)
+                               const score = this.checkGameEnd();
+                               if (score != "1/2")
+                                       finish = true;
+                       }
                        this.undo(moves1[i]);
                        if (finish)
                                return moves1[i];
@@ -844,12 +1157,14 @@ class ChessRules
                // Rank moves using a min-max at depth 2
                for (let i=0; i<moves1.length; i++)
                {
-                       moves1[i].eval = (color=="w" ? -1 : 1) * maxeval; //very low, I'm checkmated
+                       // Initial self evaluation is very low: "I'm checkmated"
+                       moves1[i].eval = (color=="w" ? -1 : 1) * maxeval;
                        this.play(moves1[i]);
                        let eval2 = undefined;
                        if (this.atLeastOneMove())
                        {
-                               eval2 = (color=="w" ? 1 : -1) * maxeval; //initialized with checkmate value
+                               // Initial enemy evaluation is very low too, for him
+                               eval2 = (color=="w" ? 1 : -1) * maxeval;
                                // Second half-move:
                                let moves2 = this.getAllValidMoves("computer");
                                for (let j=0; j<moves2.length; j++)
@@ -860,12 +1175,15 @@ class ChessRules
                                                evalPos = this.evalPosition()
                                        else
                                        {
-                                               // Work with scores for Loser variant
+                                               // Working with scores is more accurate (necessary for Loser variant)
                                                const score = this.checkGameEnd();
                                                evalPos = (score=="1/2" ? 0 : (score=="1-0" ? 1 : -1) * maxeval);
                                        }
-                                       if ((color == "w" && evalPos < eval2) || (color=="b" && evalPos > eval2))
+                                       if ((color == "w" && evalPos < eval2)
+                                               || (color=="b" && evalPos > eval2))
+                                       {
                                                eval2 = evalPos;
+                                       }
                                        this.undo(moves2[j]);
                                }
                        }
@@ -882,7 +1200,6 @@ class ChessRules
                        this.undo(moves1[i]);
                }
                moves1.sort( (a,b) => { return (color=="w" ? 1 : -1) * (b.eval - a.eval); });
-               //console.log(moves1.map(m => { return [this.getNotation(m), m.eval]; }));
 
                let candidates = [0]; //indices of candidates moves
                for (let j=1; j<moves1.length && moves1[j].eval == moves1[0].eval; j++)
@@ -893,8 +1210,7 @@ class ChessRules
                const timeStart = Date.now();
 
                // Skip depth 3+ if we found a checkmate (or if we are checkmated in 1...)
-               if (VariantRules.SEARCH_DEPTH >= 3
-                       && Math.abs(moves1[0].eval) < VariantRules.THRESHOLD_MATE)
+               if (V.SEARCH_DEPTH >= 3 && Math.abs(moves1[0].eval) < V.THRESHOLD_MATE)
                {
                        for (let i=0; i<moves1.length; i++)
                        {
@@ -903,14 +1219,15 @@ class ChessRules
                                this.play(moves1[i]);
                                // 0.1 * oldEval : heuristic to avoid some bad moves (not all...)
                                moves1[i].eval = 0.1*moves1[i].eval +
-                                       this.alphabeta(VariantRules.SEARCH_DEPTH-1, -maxeval, maxeval);
+                                       this.alphabeta(V.SEARCH_DEPTH-1, -maxeval, maxeval);
                                this.undo(moves1[i]);
                        }
-                       moves1.sort( (a,b) => { return (color=="w" ? 1 : -1) * (b.eval - a.eval); });
+                       moves1.sort( (a,b) => {
+                               return (color=="w" ? 1 : -1) * (b.eval - a.eval); });
                }
                else
                        return currentBest;
-               //console.log(moves1.map(m => { return [this.getNotation(m), m.eval]; }));
+//             console.log(moves1.map(m => { return [this.getNotation(m), m.eval]; }));
 
                candidates = [0];
                for (let j=1; j<moves1.length && moves1[j].eval == moves1[0].eval; j++)
@@ -920,7 +1237,7 @@ class ChessRules
 
        alphabeta(depth, alpha, beta)
   {
-               const maxeval = VariantRules.INFINITY;
+               const maxeval = V.INFINITY;
                const color = this.turn;
                if (!this.atLeastOneMove())
                {
@@ -966,157 +1283,50 @@ class ChessRules
 
        evalPosition()
        {
-               const [sizeX,sizeY] = VariantRules.size;
                let evaluation = 0;
                // Just count material for now
-               for (let i=0; i<sizeX; i++)
+               for (let i=0; i<V.size.x; i++)
                {
-                       for (let j=0; j<sizeY; j++)
+                       for (let j=0; j<V.size.y; j++)
                        {
-                               if (this.board[i][j] != VariantRules.EMPTY)
+                               if (this.board[i][j] != V.EMPTY)
                                {
                                        const sign = this.getColor(i,j) == "w" ? 1 : -1;
-                                       evaluation += sign * VariantRules.VALUES[this.getPiece(i,j)];
+                                       evaluation += sign * V.VALUES[this.getPiece(i,j)];
                                }
                        }
                }
                return evaluation;
        }
 
-       ////////////
-       // FEN utils
-
-       // Setup the initial random (assymetric) position
-       static GenRandInitFen()
-       {
-               let pieces = { "w": new Array(8), "b": new Array(8) };
-               // Shuffle pieces on first and last rank
-               for (let c of ["w","b"])
-               {
-                       let positions = _.range(8);
-
-                       // Get random squares for bishops
-                       let randIndex = 2 * _.random(3);
-                       let bishop1Pos = positions[randIndex];
-                       // The second bishop must be on a square of different color
-                       let randIndex_tmp = 2 * _.random(3) + 1;
-                       let bishop2Pos = positions[randIndex_tmp];
-                       // Remove chosen squares
-                       positions.splice(Math.max(randIndex,randIndex_tmp), 1);
-                       positions.splice(Math.min(randIndex,randIndex_tmp), 1);
-
-                       // Get random squares for knights
-                       randIndex = _.random(5);
-                       let knight1Pos = positions[randIndex];
-                       positions.splice(randIndex, 1);
-                       randIndex = _.random(4);
-                       let knight2Pos = positions[randIndex];
-                       positions.splice(randIndex, 1);
-
-                       // Get random square for queen
-                       randIndex = _.random(3);
-                       let queenPos = positions[randIndex];
-                       positions.splice(randIndex, 1);
-
-                       // Rooks and king positions are now fixed, because of the ordering rook-king-rook
-                       let rook1Pos = positions[0];
-                       let kingPos = positions[1];
-                       let rook2Pos = positions[2];
-
-                       // Finally put the shuffled pieces in the board array
-                       pieces[c][rook1Pos] = 'r';
-                       pieces[c][knight1Pos] = 'n';
-                       pieces[c][bishop1Pos] = 'b';
-                       pieces[c][queenPos] = 'q';
-                       pieces[c][kingPos] = 'k';
-                       pieces[c][bishop2Pos] = 'b';
-                       pieces[c][knight2Pos] = 'n';
-                       pieces[c][rook2Pos] = 'r';
-               }
-               let fen = pieces["b"].join("") +
-                       "/pppppppp/8/8/8/8/PPPPPPPP/" +
-                       pieces["w"].join("").toUpperCase() +
-                       " 1111"; //add flags
-               return fen;
-       }
-
-       // Return current fen according to pieces+colors state
-       getFen()
-       {
-               return this.getBaseFen() + " " + this.getFlagsFen();
-       }
-
-       // Position part of the FEN string
-       getBaseFen()
-       {
-               let fen = "";
-               let [sizeX,sizeY] = VariantRules.size;
-               for (let i=0; i<sizeX; i++)
-               {
-                       let emptyCount = 0;
-                       for (let j=0; j<sizeY; j++)
-                       {
-                               if (this.board[i][j] == VariantRules.EMPTY)
-                                       emptyCount++;
-                               else
-                               {
-                                       if (emptyCount > 0)
-                                       {
-                                               // Add empty squares in-between
-                                               fen += emptyCount;
-                                               emptyCount = 0;
-                                       }
-                                       fen += VariantRules.board2fen(this.board[i][j]);
-                               }
-                       }
-                       if (emptyCount > 0)
-                       {
-                               // "Flush remainder"
-                               fen += emptyCount;
-                       }
-                       if (i < sizeX - 1)
-                               fen += "/"; //separate rows
-               }
-               return fen;
-       }
-
-       // Flags part of the FEN string
-       getFlagsFen()
-       {
-               let fen = "";
-               // Add castling flags
-               for (let i of ['w','b'])
-               {
-                       for (let j=0; j<2; j++)
-                               fen += (this.castleFlags[i][j] ? '1' : '0');
-               }
-               return fen;
-       }
+       /////////////////////////
+       // MOVES + GAME NOTATION
+       /////////////////////////
 
        // Context: just before move is played, turn hasn't changed
+       // TODO: un-ambiguous notation (switch on piece type, check directions...)
        getNotation(move)
        {
-               if (move.appear.length == 2 && move.appear[0].p == VariantRules.KING) //castle
+               if (move.appear.length == 2 && move.appear[0].p == V.KING) //castle
                        return (move.end.y < move.start.y ? "0-0-0" : "0-0");
 
                // Translate final square
-               const finalSquare =
-                       String.fromCharCode(97 + move.end.y) + (VariantRules.size[0]-move.end.x);
+               const finalSquare = V.CoordsToSquare(move.end);
 
                const piece = this.getPiece(move.start.x, move.start.y);
-               if (piece == VariantRules.PAWN)
+               if (piece == V.PAWN)
                {
                        // Pawn move
                        let notation = "";
                        if (move.vanish.length > move.appear.length)
                        {
                                // Capture
-                               const startColumn = String.fromCharCode(97 + move.start.y);
+                               const startColumn = V.CoordToColumn(move.start.y);
                                notation = startColumn + "x" + finalSquare;
                        }
                        else //no capture
                                notation = finalSquare;
-                       if (move.appear.length > 0 && piece != move.appear[0].p) //promotion
+                       if (move.appear.length > 0 && move.appear[0].p != V.PAWN) //promotion
                                notation += "=" + move.appear[0].p.toUpperCase();
                        return notation;
                }
@@ -1132,47 +1342,38 @@ class ChessRules
        // Complete the usual notation, may be required for de-ambiguification
        getLongNotation(move)
        {
-               const startSquare =
-                       String.fromCharCode(97 + move.start.y) + (VariantRules.size[0]-move.start.x);
-               const finalSquare =
-                       String.fromCharCode(97 + move.end.y) + (VariantRules.size[0]-move.end.x);
-               return startSquare + finalSquare; //not encoding move. But short+long is enough
+               // Not encoding move. But short+long is enough
+               return V.CoordsToSquare(move.start) + V.CoordsToSquare(move.end);
        }
 
        // The score is already computed when calling this function
-       getPGN(mycolor, score, fenStart, mode)
+       getPGN(moves, mycolor, score, fenStart, mode)
        {
-               const zeroPad = x => { return (x<10 ? "0" : "") + x; };
                let pgn = "";
-               pgn += '[Site "vchess.club"]<br>';
-               const d = new Date();
+               pgn += '[Site "vchess.club"]\n';
                const opponent = mode=="human" ? "Anonymous" : "Computer";
-               pgn += '[Variant "' + variant + '"]<br>';
-               pgn += '[Date "' + d.getFullYear() + '-' + (d.getMonth()+1) +
-                       '-' + zeroPad(d.getDate()) + '"]<br>';
-               pgn += '[White "' + (mycolor=='w'?'Myself':opponent) + '"]<br>';
-               pgn += '[Black "' + (mycolor=='b'?'Myself':opponent) + '"]<br>';
-               pgn += '[FenStart "' + fenStart + '"]<br>';
-               pgn += '[Fen "' + this.getFen() + '"]<br>';
-               pgn += '[Result "' + score + '"]<br><br>';
-
-               // Standard PGN
-               for (let i=0; i<this.moves.length; i++)
-               {
-                       if (i % 2 == 0)
-                               pgn += ((i/2)+1) + ".";
-                       pgn += this.moves[i].notation[0] + " ";
-               }
-               pgn += "<br><br>";
-
-               // "Complete moves" PGN (helping in ambiguous cases)
-               for (let i=0; i<this.moves.length; i++)
+               pgn += '[Variant "' + variant + '"]\n';
+               pgn += '[Date "' + getDate(new Date()) + '"]\n';
+               // TODO: later when users are a bit less anonymous, use better names
+               const whiteName = ["human","computer"].includes(mode)
+                       ? (mycolor=='w'?'Myself':opponent)
+                       : "analyze";
+               const blackName = ["human","computer"].includes(mode)
+                       ? (mycolor=='b'?'Myself':opponent)
+                       : "analyze";
+               pgn += '[White "' + whiteName + '"]\n';
+               pgn += '[Black "' + blackName + '"]\n';
+               pgn += '[Fen "' + fenStart + '"]\n';
+               pgn += '[Result "' + score + '"]\n\n';
+
+               // Print moves
+               for (let i=0; i<moves.length; i++)
                {
                        if (i % 2 == 0)
                                pgn += ((i/2)+1) + ".";
-                       pgn += this.moves[i].notation[1] + " ";
+                       pgn += moves[i].notation + " ";
                }
 
-               return pgn;
+               return pgn + "\n";
        }
 }