Better Ball rules. Buggish but almost OK Synchrone variant
[vchess.git] / client / src / base_rules.js
index 15609eb..448604a 100644 (file)
 // Variants generally inherit from it, and modify some parts.
 
 import { ArrayFun } from "@/utils/array";
-import { random, sample, shuffle } from "@/utils/alea";
+import { randInt, shuffle } from "@/utils/alea";
 
-export const PiPo = class PiPo //Piece+Position
-{
+// class "PiPo": Piece + Position
+export const PiPo = class PiPo {
   // o: {piece[p], color[c], posX[x], posY[y]}
-  constructor(o)
-  {
+  constructor(o) {
     this.p = o.p;
     this.c = o.c;
     this.x = o.x;
     this.y = o.y;
   }
-}
+};
 
-// TODO: for animation, moves should contains "moving" and "fading" maybe...
-export const Move = class Move
-{
+export const Move = class Move {
   // o: {appear, vanish, [start,] [end,]}
   // appear,vanish = arrays of PiPo
   // start,end = coordinates to apply to trigger move visually (think castle)
-  constructor(o)
-  {
+  constructor(o) {
     this.appear = o.appear;
     this.vanish = o.vanish;
-    this.start = !!o.start ? o.start : {x:o.vanish[0].x, y:o.vanish[0].y};
-    this.end = !!o.end ? o.end : {x:o.appear[0].x, y:o.appear[0].y};
+    this.start = o.start ? o.start : { x: o.vanish[0].x, y: o.vanish[0].y };
+    this.end = o.end ? o.end : { x: o.appear[0].x, y: o.appear[0].y };
   }
-}
+};
 
 // NOTE: x coords = top to bottom; y = left to right (from white player perspective)
-export const ChessRules = class ChessRules
-{
+export const ChessRules = class ChessRules {
   //////////////
   // MISC UTILS
 
-  static get HasFlags() { return true; } //some variants don't have flags
+  // Some variants don't have flags:
+  static get HasFlags() {
+    return true;
+  }
+
+  // Or castle
+  static get HasCastle() {
+    return V.HasFlags;
+  }
+
+  // Pawns specifications
+  static get PawnSpecs() {
+    return {
+      directions: { 'w': -1, 'b': 1 },
+      twoSquares: true,
+      promotions: [V.ROOK, V.KNIGHT, V.BISHOP, V.QUEEN],
+      canCapture: true,
+      captureBackward: false,
+      bidirectional: false
+    };
+  }
 
-  static get HasEnpassant() { return true; } //some variants don't have ep.
+  // En-passant captures need a stack of squares:
+  static get HasEnpassant() {
+    return true;
+  }
 
-  // Path to pieces
-  static getPpath(b)
-  {
-    return b; //usual pieces in pieces/ folder
+  // Some variants cannot have analyse mode
+  static get CanAnalyze() {
+    return true;
+  }
+  // Patch: issues with javascript OOP, objects can't access static fields.
+  get canAnalyze() {
+    return V.CanAnalyze;
+  }
+
+  // Some variants show incomplete information,
+  // and thus show only a partial moves list or no list at all.
+  static get ShowMoves() {
+    return "all";
+  }
+  get showMoves() {
+    return V.ShowMoves;
+  }
+
+  // Some variants always show the same orientation
+  static get CanFlip() {
+    return true;
+  }
+  get canFlip() {
+    return V.CanFlip;
+  }
+
+  // Some variants require turn indicator
+  // (generally when analysis or flip is diabled)
+  static get ShowTurn() {
+    return !V.CanAnalyze || V.ShowMoves != "all" || !V.CanFlip;
+  }
+  get showTurn() {
+    return V.ShowTurn;
+  }
+
+  static get IMAGE_EXTENSION() {
+    // All pieces should be in the SVG format
+    return ".svg";
   }
 
   // Turn "wb" into "B" (for FEN)
-  static board2fen(b)
-  {
-    return (b[0]=='w' ? b[1].toUpperCase() : b[1]);
+  static board2fen(b) {
+    return b[0] == "w" ? b[1].toUpperCase() : b[1];
   }
 
   // Turn "p" into "bp" (for board)
-  static fen2board(f)
-  {
-    return (f.charCodeAt()<=90 ? "w"+f.toLowerCase() : "b"+f);
+  static fen2board(f) {
+    return f.charCodeAt() <= 90 ? "w" + f.toLowerCase() : "b" + f;
   }
 
-  // Check if FEN describe a position
-  static IsGoodFen(fen)
-  {
+  // Check if FEN describes a board situation correctly
+  static IsGoodFen(fen) {
     const fenParsed = V.ParseFen(fen);
     // 1) Check position
-    if (!V.IsGoodPosition(fenParsed.position))
-      return false;
+    if (!V.IsGoodPosition(fenParsed.position)) return false;
     // 2) Check turn
-    if (!fenParsed.turn || !V.IsGoodTurn(fenParsed.turn))
-      return false;
+    if (!fenParsed.turn || !V.IsGoodTurn(fenParsed.turn)) return false;
     // 3) Check moves count
     if (!fenParsed.movesCount || !(parseInt(fenParsed.movesCount) >= 0))
       return false;
@@ -76,81 +123,70 @@ export const ChessRules = class ChessRules
     if (V.HasFlags && (!fenParsed.flags || !V.IsGoodFlags(fenParsed.flags)))
       return false;
     // 5) Check enpassant
-    if (V.HasEnpassant &&
-      (!fenParsed.enpassant || !V.IsGoodEnpassant(fenParsed.enpassant)))
-    {
+    if (
+      V.HasEnpassant &&
+      (!fenParsed.enpassant || !V.IsGoodEnpassant(fenParsed.enpassant))
+    ) {
       return false;
     }
     return true;
   }
 
   // Is position part of the FEN a priori correct?
-  static IsGoodPosition(position)
-  {
-    if (position.length == 0)
-      return false;
+  static IsGoodPosition(position) {
+    if (position.length == 0) return false;
     const rows = position.split("/");
-    if (rows.length != V.size.x)
-      return false;
-    for (let row of rows)
-    {
+    if (rows.length != V.size.x) return false;
+    let kings = { "k": 0, "K": 0 };
+    for (let row of rows) {
       let sumElts = 0;
-      for (let i=0; i<row.length; i++)
-      {
-        if (V.PIECES.includes(row[i].toLowerCase()))
-          sumElts++;
-        else
-        {
+      for (let i = 0; i < row.length; i++) {
+        if (['K','k'].includes(row[i])) kings[row[i]]++;
+        if (V.PIECES.includes(row[i].toLowerCase())) sumElts++;
+        else {
           const num = parseInt(row[i]);
-          if (isNaN(num))
-            return false;
+          if (isNaN(num)) return false;
           sumElts += num;
         }
       }
-      if (sumElts != V.size.y)
-        return false;
+      if (sumElts != V.size.y) return false;
     }
+    // Both kings should be on board. Exactly one per color.
+    if (Object.values(kings).some(v => v != 1)) return false;
     return true;
   }
 
   // For FEN checking
-  static IsGoodTurn(turn)
-  {
-    return ["w","b"].includes(turn);
+  static IsGoodTurn(turn) {
+    return ["w", "b"].includes(turn);
   }
 
   // For FEN checking
-  static IsGoodFlags(flags)
-  {
-    return !!flags.match(/^[01]{4,4}$/);
-  }
-
-  static IsGoodEnpassant(enpassant)
-  {
-    if (enpassant != "-")
-    {
-      const ep = V.SquareToCoords(fenParsed.enpassant);
-      if (isNaN(ep.x) || !V.OnBoard(ep))
-        return false;
+  static IsGoodFlags(flags) {
+    // NOTE: a little too permissive to work with more variants
+    return !!flags.match(/^[a-z]{4,4}$/);
+  }
+
+  static IsGoodEnpassant(enpassant) {
+    if (enpassant != "-") {
+      const ep = V.SquareToCoords(enpassant);
+      if (isNaN(ep.x) || !V.OnBoard(ep)) return false;
     }
     return true;
   }
 
   // 3 --> d (column number to letter)
-  static CoordToColumn(colnum)
-  {
+  static CoordToColumn(colnum) {
     return String.fromCharCode(97 + colnum);
   }
 
   // d --> 3 (column letter to number)
-  static ColumnToCoord(column)
-  {
+  static ColumnToCoord(column) {
     return column.charCodeAt(0) - 97;
   }
 
   // a4 --> {x:3,y:0}
-  static SquareToCoords(sq)
-  {
+  static SquareToCoords(sq) {
     return {
       // NOTE: column is always one char => max 26 columns
       // row is counted from black side => subtraction
@@ -160,108 +196,120 @@ export const ChessRules = class ChessRules
   }
 
   // {x:0,y:4} --> e8
-  static CoordsToSquare(coords)
-  {
+  static CoordsToSquare(coords) {
     return V.CoordToColumn(coords.y) + (V.size.x - coords.x);
   }
 
+  // Path to pieces (standard ones in pieces/ folder)
+  getPpath(b) {
+    return b;
+  }
+
+  // Path to promotion pieces (usually the same)
+  getPPpath(b) {
+    return this.getPpath(b);
+  }
+
   // Aggregates flags into one object
-  aggregateFlags()
-  {
+  aggregateFlags() {
     return this.castleFlags;
   }
 
   // Reverse operation
-  disaggregateFlags(flags)
-  {
+  disaggregateFlags(flags) {
     this.castleFlags = flags;
   }
 
   // En-passant square, if any
-  getEpSquare(moveOrSquare)
-  {
-    if (!moveOrSquare)
-      return undefined;
-    if (typeof moveOrSquare === "string")
-    {
+  getEpSquare(moveOrSquare) {
+    if (!moveOrSquare) return undefined;
+    if (typeof moveOrSquare === "string") {
       const square = moveOrSquare;
-      if (square == "-")
-        return undefined;
+      if (square == "-") return undefined;
       return V.SquareToCoords(square);
     }
     // Argument is a move:
     const move = moveOrSquare;
-    const [sx,sy,ex] = [move.start.x,move.start.y,move.end.x];
-    // TODO: next conditions are first for Atomic, and last for Checkered
-    if (move.appear.length > 0 && Math.abs(sx - ex) == 2
-      && move.appear[0].p == V.PAWN && ["w","b"].includes(move.appear[0].c))
-    {
+    const s = move.start,
+          e = move.end;
+    if (
+      Math.abs(s.x - e.x) == 2 &&
+      s.y == e.y &&
+      move.appear[0].p == V.PAWN
+    ) {
       return {
-        x: (sx + ex)/2,
-        y: sy
+        x: (s.x + e.x) / 2,
+        y: s.y
       };
     }
     return undefined; //default
   }
 
   // Can thing on square1 take thing on square2
-  canTake([x1,y1], [x2,y2])
-  {
-    return this.getColor(x1,y1) !== this.getColor(x2,y2);
+  canTake([x1, y1], [x2, y2]) {
+    return this.getColor(x1, y1) !== this.getColor(x2, y2);
   }
 
   // Is (x,y) on the chessboard?
-  static OnBoard(x,y)
-  {
-    return (x>=0 && x<V.size.x && y>=0 && y<V.size.y);
+  static OnBoard(x, y) {
+    return x >= 0 && x < V.size.x && y >= 0 && y < V.size.y;
   }
 
   // Used in interface: 'side' arg == player color
-  canIplay(side, [x,y])
-  {
-    return (this.turn == side && this.getColor(x,y) == side);
+  canIplay(side, [x, y]) {
+    return this.turn == side && this.getColor(x, y) == side;
   }
 
   // On which squares is color under check ? (for interface)
-  getCheckSquares(color)
-  {
-    return this.isAttacked(this.kingPos[color], [V.GetOppCol(color)])
-      ? [JSON.parse(JSON.stringify(this.kingPos[color]))] //need to duplicate!
-      : [];
+  getCheckSquares(color) {
+    return (
+      this.underCheck(color)
+        ? [JSON.parse(JSON.stringify(this.kingPos[color]))] //need to duplicate!
+        : []
+    );
   }
 
   /////////////
   // FEN UTILS
 
-  // Setup the initial random (assymetric) position
-  static GenRandInitFen()
-  {
-    let pieces = { "w": new Array(8), "b": new Array(8) };
-    // Shuffle pieces on first and last rank
-    for (let c of ["w","b"])
-    {
+  // Setup the initial random (asymmetric) position
+  static GenRandInitFen(randomness) {
+    if (randomness == 0)
+      // Deterministic:
+      return "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w 0 ahah -";
+
+    let pieces = { w: new Array(8), b: new Array(8) };
+    let flags = "";
+    // Shuffle pieces on first (and last rank if randomness == 2)
+    for (let c of ["w", "b"]) {
+      if (c == 'b' && randomness == 1) {
+        pieces['b'] = pieces['w'];
+        flags += flags;
+        break;
+      }
+
       let positions = ArrayFun.range(8);
 
       // Get random squares for bishops
-      let randIndex = 2 * random(4);
+      let randIndex = 2 * randInt(4);
       const bishop1Pos = positions[randIndex];
       // The second bishop must be on a square of different color
-      let randIndex_tmp = 2 * random(4) + 1;
+      let randIndex_tmp = 2 * randInt(4) + 1;
       const bishop2Pos = positions[randIndex_tmp];
       // Remove chosen squares
-      positions.splice(Math.max(randIndex,randIndex_tmp), 1);
-      positions.splice(Math.min(randIndex,randIndex_tmp), 1);
+      positions.splice(Math.max(randIndex, randIndex_tmp), 1);
+      positions.splice(Math.min(randIndex, randIndex_tmp), 1);
 
       // Get random squares for knights
-      randIndex = random(6);
+      randIndex = randInt(6);
       const knight1Pos = positions[randIndex];
       positions.splice(randIndex, 1);
-      randIndex = random(5);
+      randIndex = randInt(5);
       const knight2Pos = positions[randIndex];
       positions.splice(randIndex, 1);
 
       // Get random square for queen
-      randIndex = random(4);
+      randIndex = randInt(4);
       const queenPos = positions[randIndex];
       positions.splice(randIndex, 1);
 
@@ -272,151 +320,149 @@ export const ChessRules = class ChessRules
       const rook2Pos = positions[2];
 
       // Finally put the shuffled pieces in the board array
-      pieces[c][rook1Pos] = 'r';
-      pieces[c][knight1Pos] = 'n';
-      pieces[c][bishop1Pos] = 'b';
-      pieces[c][queenPos] = 'q';
-      pieces[c][kingPos] = 'k';
-      pieces[c][bishop2Pos] = 'b';
-      pieces[c][knight2Pos] = 'n';
-      pieces[c][rook2Pos] = 'r';
+      pieces[c][rook1Pos] = "r";
+      pieces[c][knight1Pos] = "n";
+      pieces[c][bishop1Pos] = "b";
+      pieces[c][queenPos] = "q";
+      pieces[c][kingPos] = "k";
+      pieces[c][bishop2Pos] = "b";
+      pieces[c][knight2Pos] = "n";
+      pieces[c][rook2Pos] = "r";
+      flags += V.CoordToColumn(rook1Pos) + V.CoordToColumn(rook2Pos);
     }
-    return pieces["b"].join("") +
+    // Add turn + flags + enpassant
+    return (
+      pieces["b"].join("") +
       "/pppppppp/8/8/8/8/PPPPPPPP/" +
       pieces["w"].join("").toUpperCase() +
-      " w 0 1111 -"; //add turn + flags + enpassant
+      " w 0 " + flags + " -"
+    );
   }
 
   // "Parse" FEN: just return untransformed string data
-  static ParseFen(fen)
-  {
+  static ParseFen(fen) {
     const fenParts = fen.split(" ");
-    let res =
-    {
+    let res = {
       position: fenParts[0],
       turn: fenParts[1],
-      movesCount: fenParts[2],
+      movesCount: fenParts[2]
     };
     let nextIdx = 3;
-    if (V.HasFlags)
-      Object.assign(res, {flags: fenParts[nextIdx++]});
-    if (V.HasEnpassant)
-      Object.assign(res, {enpassant: fenParts[nextIdx]});
+    if (V.HasFlags) Object.assign(res, { flags: fenParts[nextIdx++] });
+    if (V.HasEnpassant) Object.assign(res, { enpassant: fenParts[nextIdx] });
     return res;
   }
 
   // Return current fen (game state)
-  getFen()
-  {
-    return this.getBaseFen() + " " +
-      this.getTurnFen() + " " + this.movesCount +
-      (V.HasFlags ? (" " + this.getFlagsFen()) : "") +
-      (V.HasEnpassant ? (" " + this.getEnpassantFen()) : "");
+  getFen() {
+    return (
+      this.getBaseFen() + " " +
+      this.getTurnFen() + " " +
+      this.movesCount +
+      (V.HasFlags ? " " + this.getFlagsFen() : "") +
+      (V.HasEnpassant ? " " + this.getEnpassantFen() : "")
+    );
+  }
+
+  getFenForRepeat() {
+    // Omit movesCount, only variable allowed to differ
+    return (
+      this.getBaseFen() + "_" +
+      this.getTurnFen() +
+      (V.HasFlags ? "_" + this.getFlagsFen() : "") +
+      (V.HasEnpassant ? "_" + this.getEnpassantFen() : "")
+    );
   }
 
   // Position part of the FEN string
-  getBaseFen()
-  {
+  getBaseFen() {
+    const format = (count) => {
+      // if more than 9 consecutive free spaces, break the integer,
+      // otherwise FEN parsing will fail.
+      if (count <= 9) return count;
+      // Currently only boards of size up to 11 or 12:
+      return "9" + (count - 9);
+    };
     let position = "";
-    for (let i=0; i<V.size.x; i++)
-    {
+    for (let i = 0; i < V.size.x; i++) {
       let emptyCount = 0;
-      for (let j=0; j<V.size.y; j++)
-      {
-        if (this.board[i][j] == V.EMPTY)
-          emptyCount++;
-        else
-        {
-          if (emptyCount > 0)
-          {
+      for (let j = 0; j < V.size.y; j++) {
+        if (this.board[i][j] == V.EMPTY) emptyCount++;
+        else {
+          if (emptyCount > 0) {
             // Add empty squares in-between
-            position += emptyCount;
+            position += format(emptyCount);
             emptyCount = 0;
           }
           position += V.board2fen(this.board[i][j]);
         }
       }
-      if (emptyCount > 0)
-      {
+      if (emptyCount > 0) {
         // "Flush remainder"
-        position += emptyCount;
+        position += format(emptyCount);
       }
-      if (i < V.size.x - 1)
-        position += "/"; //separate rows
+      if (i < V.size.x - 1) position += "/"; //separate rows
     }
     return position;
   }
 
-  getTurnFen()
-  {
+  getTurnFen() {
     return this.turn;
   }
 
   // Flags part of the FEN string
-  getFlagsFen()
-  {
+  getFlagsFen() {
     let flags = "";
-    // Add castling flags
-    for (let i of ['w','b'])
-    {
-      for (let j=0; j<2; j++)
-        flags += (this.castleFlags[i][j] ? '1' : '0');
-    }
+    // Castling flags
+    for (let c of ["w", "b"])
+      flags += this.castleFlags[c].map(V.CoordToColumn).join("");
     return flags;
   }
 
   // Enpassant part of the FEN string
-  getEnpassantFen()
-  {
+  getEnpassantFen() {
     const L = this.epSquares.length;
-    if (!this.epSquares[L-1])
-      return "-"; //no en-passant
-    return V.CoordsToSquare(this.epSquares[L-1]);
+    if (!this.epSquares[L - 1]) return "-"; //no en-passant
+    return V.CoordsToSquare(this.epSquares[L - 1]);
   }
 
   // Turn position fen into double array ["wb","wp","bk",...]
-  static GetBoard(position)
-  {
+  static GetBoard(position) {
     const rows = position.split("/");
     let board = ArrayFun.init(V.size.x, V.size.y, "");
-    for (let i=0; i<rows.length; i++)
-    {
+    for (let i = 0; i < rows.length; i++) {
       let j = 0;
-      for (let indexInRow = 0; indexInRow < rows[i].length; indexInRow++)
-      {
+      for (let indexInRow = 0; indexInRow < rows[i].length; indexInRow++) {
         const character = rows[i][indexInRow];
         const num = parseInt(character);
-        if (!isNaN(num))
-          j += num; //just shift j
-        else //something at position i,j
-          board[i][j++] = V.fen2board(character);
+        // If num is a number, just shift j:
+        if (!isNaN(num)) j += num;
+        // Else: something at position i,j
+        else board[i][j++] = V.fen2board(character);
       }
     }
     return board;
   }
 
   // Extract (relevant) flags from fen
-  setFlags(fenflags)
-  {
+  setFlags(fenflags) {
     // white a-castle, h-castle, black a-castle, h-castle
-    this.castleFlags = {'w': [true,true], 'b': [true,true]};
-    if (!fenflags)
-      return;
-    for (let i=0; i<4; i++)
-      this.castleFlags[i < 2 ? 'w' : 'b'][i%2] = (fenflags.charAt(i) == '1');
+    this.castleFlags = { w: [-1, -1], b: [-1, -1] };
+    for (let i = 0; i < 4; i++) {
+      this.castleFlags[i < 2 ? "w" : "b"][i % 2] =
+        V.ColumnToCoord(fenflags.charAt(i));
+    }
   }
 
   //////////////////
   // INITIALIZATION
 
-  constructor(fen)
-  {
-    this.re_init(fen);
-  }
-
   // Fen string fully describes the game state
-  re_init(fen)
-  {
+  constructor(fen) {
+    if (!fen)
+      // In printDiagram() fen isn't supply because only getPpath() is used
+      // TODO: find a better solution!
+      return;
     const fenParsed = V.ParseFen(fen);
     this.board = V.GetBoard(fenParsed.position);
     this.turn = fenParsed.turn[0]; //[0] to work with MarseilleRules
@@ -424,44 +470,28 @@ export const ChessRules = class ChessRules
     this.setOtherVariables(fen);
   }
 
-  // Scan board for kings and rooks positions
-  scanKingsRooks(fen)
-  {
-    this.INIT_COL_KING = {'w':-1, 'b':-1};
-    this.INIT_COL_ROOK = {'w':[-1,-1], 'b':[-1,-1]};
-    this.kingPos = {'w':[-1,-1], 'b':[-1,-1]}; //squares of white and black king
+  // Scan board for kings positions
+  scanKings(fen) {
+    this.INIT_COL_KING = { w: -1, b: -1 };
+    this.kingPos = { w: [-1, -1], b: [-1, -1] }; //squares of white and black king
     const fenRows = V.ParseFen(fen).position.split("/");
-    for (let i=0; i<fenRows.length; i++)
-    {
+    const startRow = { 'w': V.size.x - 1, 'b': 0 };
+    for (let i = 0; i < fenRows.length; i++) {
       let k = 0; //column index on board
-      for (let j=0; j<fenRows[i].length; j++)
-      {
-        switch (fenRows[i].charAt(j))
-        {
-          case 'k':
-            this.kingPos['b'] = [i,k];
-            this.INIT_COL_KING['b'] = k;
+      for (let j = 0; j < fenRows[i].length; j++) {
+        switch (fenRows[i].charAt(j)) {
+          case "k":
+            this.kingPos["b"] = [i, k];
+            this.INIT_COL_KING["b"] = k;
             break;
-          case 'K':
-            this.kingPos['w'] = [i,k];
-            this.INIT_COL_KING['w'] = k;
+          case "K":
+            this.kingPos["w"] = [i, k];
+            this.INIT_COL_KING["w"] = k;
             break;
-          case 'r':
-            if (this.INIT_COL_ROOK['b'][0] < 0)
-              this.INIT_COL_ROOK['b'][0] = k;
-            else
-              this.INIT_COL_ROOK['b'][1] = k;
-            break;
-          case 'R':
-            if (this.INIT_COL_ROOK['w'][0] < 0)
-              this.INIT_COL_ROOK['w'][0] = k;
-            else
-              this.INIT_COL_ROOK['w'][1] = k;
-            break;
-          default:
+          default: {
             const num = parseInt(fenRows[i].charAt(j));
-            if (!isNaN(num))
-              k += (num-1);
+            if (!isNaN(num)) k += num - 1;
+          }
         }
         k++;
       }
@@ -469,337 +499,413 @@ export const ChessRules = class ChessRules
   }
 
   // Some additional variables from FEN (variant dependant)
-  setOtherVariables(fen)
-  {
+  setOtherVariables(fen) {
     // Set flags and enpassant:
     const parsedFen = V.ParseFen(fen);
-    if (V.HasFlags)
-      this.setFlags(parsedFen.flags);
-    if (V.HasEnpassant)
-    {
-      const epSq = parsedFen.enpassant != "-"
-        ? V.SquareToCoords(parsedFen.enpassant)
-        : undefined;
-      this.epSquares = [ epSq ];
+    if (V.HasFlags) this.setFlags(parsedFen.flags);
+    if (V.HasEnpassant) {
+      const epSq =
+        parsedFen.enpassant != "-"
+          ? this.getEpSquare(parsedFen.enpassant)
+          : undefined;
+      this.epSquares = [epSq];
     }
-    // Search for king and rooks positions:
-    this.scanKingsRooks(fen);
+    // Search for kings positions:
+    this.scanKings(fen);
   }
 
   /////////////////////
   // GETTERS & SETTERS
 
-  static get size()
-  {
-    return {x:8, y:8};
+  static get size() {
+    return { x: 8, y: 8 };
   }
 
-  // Color of thing on suqare (i,j). 'undefined' if square is empty
-  getColor(i,j)
-  {
+  // Color of thing on square (i,j). 'undefined' if square is empty
+  getColor(i, j) {
     return this.board[i][j].charAt(0);
   }
 
   // Piece type on square (i,j). 'undefined' if square is empty
-  getPiece(i,j)
-  {
+  getPiece(i, j) {
     return this.board[i][j].charAt(1);
   }
 
   // Get opponent color
-  static GetOppCol(color)
-  {
-    return (color=="w" ? "b" : "w");
-  }
-
-  // Get next color (for compatibility with 3 and 4 players games)
-  static GetNextCol(color)
-  {
-    return V.GetOppCol(color);
+  static GetOppCol(color) {
+    return color == "w" ? "b" : "w";
   }
 
   // Pieces codes (for a clearer code)
-  static get PAWN() { return 'p'; }
-  static get ROOK() { return 'r'; }
-  static get KNIGHT() { return 'n'; }
-  static get BISHOP() { return 'b'; }
-  static get QUEEN() { return 'q'; }
-  static get KING() { return 'k'; }
+  static get PAWN() {
+    return "p";
+  }
+  static get ROOK() {
+    return "r";
+  }
+  static get KNIGHT() {
+    return "n";
+  }
+  static get BISHOP() {
+    return "b";
+  }
+  static get QUEEN() {
+    return "q";
+  }
+  static get KING() {
+    return "k";
+  }
 
   // For FEN checking:
-  static get PIECES()
-  {
-    return [V.PAWN,V.ROOK,V.KNIGHT,V.BISHOP,V.QUEEN,V.KING];
+  static get PIECES() {
+    return [V.PAWN, V.ROOK, V.KNIGHT, V.BISHOP, V.QUEEN, V.KING];
   }
 
   // Empty square
-  static get EMPTY() { return ""; }
+  static get EMPTY() {
+    return "";
+  }
 
   // Some pieces movements
-  static get steps()
-  {
+  static get steps() {
     return {
-      'r': [ [-1,0],[1,0],[0,-1],[0,1] ],
-      'n': [ [-1,-2],[-1,2],[1,-2],[1,2],[-2,-1],[-2,1],[2,-1],[2,1] ],
-      'b': [ [-1,-1],[-1,1],[1,-1],[1,1] ],
+      r: [
+        [-1, 0],
+        [1, 0],
+        [0, -1],
+        [0, 1]
+      ],
+      n: [
+        [-1, -2],
+        [-1, 2],
+        [1, -2],
+        [1, 2],
+        [-2, -1],
+        [-2, 1],
+        [2, -1],
+        [2, 1]
+      ],
+      b: [
+        [-1, -1],
+        [-1, 1],
+        [1, -1],
+        [1, 1]
+      ]
     };
   }
 
   ////////////////////
   // MOVES GENERATION
 
-  // All possible moves from selected square (assumption: color is OK)
-  getPotentialMovesFrom([x,y])
-  {
-    switch (this.getPiece(x,y))
-    {
+  // All possible moves from selected square
+  getPotentialMovesFrom([x, y]) {
+    switch (this.getPiece(x, y)) {
       case V.PAWN:
-        return this.getPotentialPawnMoves([x,y]);
+        return this.getPotentialPawnMoves([x, y]);
       case V.ROOK:
-        return this.getPotentialRookMoves([x,y]);
+        return this.getPotentialRookMoves([x, y]);
       case V.KNIGHT:
-        return this.getPotentialKnightMoves([x,y]);
+        return this.getPotentialKnightMoves([x, y]);
       case V.BISHOP:
-        return this.getPotentialBishopMoves([x,y]);
+        return this.getPotentialBishopMoves([x, y]);
       case V.QUEEN:
-        return this.getPotentialQueenMoves([x,y]);
+        return this.getPotentialQueenMoves([x, y]);
       case V.KING:
-        return this.getPotentialKingMoves([x,y]);
+        return this.getPotentialKingMoves([x, y]);
     }
+    return []; //never reached
   }
 
   // Build a regular move from its initial and destination squares.
   // tr: transformation
-  getBasicMove([sx,sy], [ex,ey], tr)
-  {
+  getBasicMove([sx, sy], [ex, ey], tr) {
+    const initColor = this.getColor(sx, sy);
+    const initPiece = this.getPiece(sx, sy);
     let mv = new Move({
       appear: [
         new PiPo({
           x: ex,
           y: ey,
-          c: !!tr ? tr.c : this.getColor(sx,sy),
-          p: !!tr ? tr.p : this.getPiece(sx,sy)
+          c: tr ? tr.c : initColor,
+          p: tr ? tr.p : initPiece
         })
       ],
       vanish: [
         new PiPo({
           x: sx,
           y: sy,
-          c: this.getColor(sx,sy),
-          p: this.getPiece(sx,sy)
+          c: initColor,
+          p: initPiece
         })
       ]
     });
 
     // The opponent piece disappears if we take it
-    if (this.board[ex][ey] != V.EMPTY)
-    {
+    if (this.board[ex][ey] != V.EMPTY) {
       mv.vanish.push(
         new PiPo({
           x: ex,
           y: ey,
-          c: this.getColor(ex,ey),
-          p: this.getPiece(ex,ey)
+          c: this.getColor(ex, ey),
+          p: this.getPiece(ex, ey)
         })
       );
     }
+
     return mv;
   }
 
   // Generic method to find possible moves of non-pawn pieces:
   // "sliding or jumping"
-  getSlideNJumpMoves([x,y], steps, oneStep)
-  {
-    const color = this.getColor(x,y);
+  getSlideNJumpMoves([x, y], steps, oneStep) {
     let moves = [];
-    outerLoop:
-    for (let step of steps)
-    {
+    outerLoop: for (let step of steps) {
       let i = x + step[0];
       let j = y + step[1];
-      while (V.OnBoard(i,j) && this.board[i][j] == V.EMPTY)
-      {
-        moves.push(this.getBasicMove([x,y], [i,j]));
-        if (oneStep !== undefined)
-          continue outerLoop;
+      while (V.OnBoard(i, j) && this.board[i][j] == V.EMPTY) {
+        moves.push(this.getBasicMove([x, y], [i, j]));
+        if (oneStep) continue outerLoop;
         i += step[0];
         j += step[1];
       }
-      if (V.OnBoard(i,j) && this.canTake([x,y], [i,j]))
-        moves.push(this.getBasicMove([x,y], [i,j]));
+      if (V.OnBoard(i, j) && this.canTake([x, y], [i, j]))
+        moves.push(this.getBasicMove([x, y], [i, j]));
     }
     return moves;
   }
 
+  // Special case of en-passant captures: treated separately
+  getEnpassantCaptures([x, y], shiftX) {
+    const Lep = this.epSquares.length;
+    const epSquare = this.epSquares[Lep - 1]; //always at least one element
+    let enpassantMove = null;
+    if (
+      !!epSquare &&
+      epSquare.x == x + shiftX &&
+      Math.abs(epSquare.y - y) == 1
+    ) {
+      enpassantMove = this.getBasicMove([x, y], [epSquare.x, epSquare.y]);
+      enpassantMove.vanish.push({
+        x: x,
+        y: epSquare.y,
+        // Captured piece is usually a pawn, but next line seems harmless
+        p: this.getPiece(x, epSquare.y),
+        c: this.getColor(x, epSquare.y)
+      });
+    }
+    return !!enpassantMove ? [enpassantMove] : [];
+  }
+
+  // Consider all potential promotions:
+  addPawnMoves([x1, y1], [x2, y2], moves, promotions) {
+    let finalPieces = [V.PAWN];
+    const color = this.turn;
+    const lastRank = (color == "w" ? 0 : V.size.x - 1);
+    if (x2 == lastRank) {
+      // promotions arg: special override for Hiddenqueen variant
+      if (!!promotions) finalPieces = promotions;
+      else if (!!V.PawnSpecs.promotions)
+        finalPieces = V.PawnSpecs.promotions;
+    }
+    let tr = null;
+    for (let piece of finalPieces) {
+      tr = (piece != V.PAWN ? { c: color, p: piece } : null);
+      moves.push(this.getBasicMove([x1, y1], [x2, y2], tr));
+    }
+  }
+
   // What are the pawn moves from square x,y ?
-  getPotentialPawnMoves([x,y])
-  {
+  getPotentialPawnMoves([x, y], promotions) {
     const color = this.turn;
-    let moves = [];
-    const [sizeX,sizeY] = [V.size.x,V.size.y];
-    const shiftX = (color == "w" ? -1 : 1);
-    const firstRank = (color == 'w' ? sizeX-1 : 0);
-    const startRank = (color == "w" ? sizeX-2 : 1);
-    const lastRank = (color == "w" ? 0 : sizeX-1);
-    const pawnColor = this.getColor(x,y); //can be different for checkered
-
-    // NOTE: next condition is generally true (no pawn on last rank)
-    if (x+shiftX >= 0 && x+shiftX < sizeX)
-    {
-      const finalPieces = x + shiftX == lastRank
-        ? [V.ROOK,V.KNIGHT,V.BISHOP,V.QUEEN]
-        : [V.PAWN]
-      // One square forward
-      if (this.board[x+shiftX][y] == V.EMPTY)
-      {
-        for (let piece of finalPieces)
-        {
-          moves.push(this.getBasicMove([x,y], [x+shiftX,y],
-            {c:pawnColor,p:piece}));
-        }
-        // Next condition because pawns on 1st rank can generally jump
-        if ([startRank,firstRank].includes(x)
-          && this.board[x+2*shiftX][y] == V.EMPTY)
-        {
-          // Two squares jump
-          moves.push(this.getBasicMove([x,y], [x+2*shiftX,y]));
+    const [sizeX, sizeY] = [V.size.x, V.size.y];
+    const pawnShiftX = V.PawnSpecs.directions[color];
+    const firstRank = (color == "w" ? sizeX - 1 : 0);
+    const startRank = (color == "w" ? sizeX - 2 : 1);
+
+    // Pawn movements in shiftX direction:
+    const getPawnMoves = (shiftX) => {
+      let moves = [];
+      // NOTE: next condition is generally true (no pawn on last rank)
+      if (x + shiftX >= 0 && x + shiftX < sizeX) {
+        if (this.board[x + shiftX][y] == V.EMPTY) {
+          // One square forward
+          this.addPawnMoves([x, y], [x + shiftX, y], moves, promotions);
+          // Next condition because pawns on 1st rank can generally jump
+          if (
+            V.PawnSpecs.twoSquares &&
+            [startRank, firstRank].includes(x) &&
+            this.board[x + 2 * shiftX][y] == V.EMPTY
+          ) {
+            // Two squares jump
+            moves.push(this.getBasicMove([x, y], [x + 2 * shiftX, y]));
+          }
         }
-      }
-      // Captures
-      for (let shiftY of [-1,1])
-      {
-        if (y + shiftY >= 0 && y + shiftY < sizeY
-          && this.board[x+shiftX][y+shiftY] != V.EMPTY
-          && this.canTake([x,y], [x+shiftX,y+shiftY]))
-        {
-          for (let piece of finalPieces)
-          {
-            moves.push(this.getBasicMove([x,y], [x+shiftX,y+shiftY],
-              {c:pawnColor,p:piece}));
+        // Captures
+        if (V.PawnSpecs.canCapture) {
+          for (let shiftY of [-1, 1]) {
+            if (
+              y + shiftY >= 0 &&
+              y + shiftY < sizeY
+            ) {
+              if (
+                this.board[x + shiftX][y + shiftY] != V.EMPTY &&
+                this.canTake([x, y], [x + shiftX, y + shiftY])
+              ) {
+                this.addPawnMoves(
+                  [x, y], [x + shiftX, y + shiftY],
+                  moves, promotions
+                );
+              }
+              if (
+                V.PawnSpecs.captureBackward &&
+                x - shiftX >= 0 && x - shiftX < V.size.x &&
+                this.board[x - shiftX][y + shiftY] != V.EMPTY &&
+                this.canTake([x, y], [x - shiftX, y + shiftY])
+              ) {
+                this.addPawnMoves(
+                  [x, y], [x + shiftX, y + shiftY],
+                  moves, promotions
+                );
+              }
+            }
           }
         }
       }
+      return moves;
     }
 
-    if (V.HasEnpassant)
-    {
-      // En passant
-      const Lep = this.epSquares.length;
-      const epSquare = this.epSquares[Lep-1]; //always at least one element
-      if (!!epSquare && epSquare.x == x+shiftX && Math.abs(epSquare.y - y) == 1)
-      {
-        let enpassantMove = this.getBasicMove([x,y], [epSquare.x,epSquare.y]);
-        enpassantMove.vanish.push({
-          x: x,
-          y: epSquare.y,
-          p: 'p',
-          c: this.getColor(x,epSquare.y)
-        });
-        moves.push(enpassantMove);
-      }
+    let pMoves = getPawnMoves(pawnShiftX);
+    if (V.PawnSpecs.bidirectional)
+      pMoves = pMoves.concat(getPawnMoves(-pawnShiftX));
+
+    if (V.HasEnpassant) {
+      // NOTE: backward en-passant captures are not considered
+      // because no rules define them (for now).
+      Array.prototype.push.apply(
+        pMoves,
+        this.getEnpassantCaptures([x, y], pawnShiftX)
+      );
     }
 
-    return moves;
+    return pMoves;
   }
 
   // What are the rook moves from square x,y ?
-  getPotentialRookMoves(sq)
-  {
+  getPotentialRookMoves(sq) {
     return this.getSlideNJumpMoves(sq, V.steps[V.ROOK]);
   }
 
   // What are the knight moves from square x,y ?
-  getPotentialKnightMoves(sq)
-  {
+  getPotentialKnightMoves(sq) {
     return this.getSlideNJumpMoves(sq, V.steps[V.KNIGHT], "oneStep");
   }
 
   // What are the bishop moves from square x,y ?
-  getPotentialBishopMoves(sq)
-  {
+  getPotentialBishopMoves(sq) {
     return this.getSlideNJumpMoves(sq, V.steps[V.BISHOP]);
   }
 
   // What are the queen moves from square x,y ?
-  getPotentialQueenMoves(sq)
-  {
-    return this.getSlideNJumpMoves(sq,
-      V.steps[V.ROOK].concat(V.steps[V.BISHOP]));
+  getPotentialQueenMoves(sq) {
+    return this.getSlideNJumpMoves(
+      sq,
+      V.steps[V.ROOK].concat(V.steps[V.BISHOP])
+    );
   }
 
   // What are the king moves from square x,y ?
-  getPotentialKingMoves(sq)
-  {
+  getPotentialKingMoves(sq) {
     // Initialize with normal moves
-    let moves = this.getSlideNJumpMoves(sq,
-      V.steps[V.ROOK].concat(V.steps[V.BISHOP]), "oneStep");
-    return moves.concat(this.getCastleMoves(sq));
+    let moves = this.getSlideNJumpMoves(
+      sq,
+      V.steps[V.ROOK].concat(V.steps[V.BISHOP]),
+      "oneStep"
+    );
+    if (V.HasCastle) moves = moves.concat(this.getCastleMoves(sq));
+    return moves;
   }
 
-  getCastleMoves([x,y])
-  {
-    const c = this.getColor(x,y);
-    if (x != (c=="w" ? V.size.x-1 : 0) || y != this.INIT_COL_KING[c])
+  // "castleInCheck" arg to let some variants castle under check
+  getCastleMoves([x, y], castleInCheck) {
+    const c = this.getColor(x, y);
+    if (x != (c == "w" ? V.size.x - 1 : 0) || y != this.INIT_COL_KING[c])
       return []; //x isn't first rank, or king has moved (shortcut)
 
     // Castling ?
     const oppCol = V.GetOppCol(c);
     let moves = [];
     let i = 0;
-    const finalSquares = [ [2,3], [V.size.y-2,V.size.y-3] ]; //king, then rook
-    castlingCheck:
-    for (let castleSide=0; castleSide < 2; castleSide++) //large, then small
-    {
-      if (!this.castleFlags[c][castleSide])
+    // King, then rook:
+    const finalSquares = [
+      [2, 3],
+      [V.size.y - 2, V.size.y - 3]
+    ];
+    castlingCheck: for (
+      let castleSide = 0;
+      castleSide < 2;
+      castleSide++ //large, then small
+    ) {
+      if (this.castleFlags[c][castleSide] >= V.size.y) continue;
+      // If this code is reached, rook and king are on initial position
+
+      // NOTE: in some variants this is not a rook, but let's keep variable name
+      const rookPos = this.castleFlags[c][castleSide];
+      const castlingPiece = this.getPiece(x, rookPos);
+      if (this.getColor(x, rookPos) != c)
+        // Rook is here but changed color (see Benedict)
         continue;
-      // If this code is reached, rooks and king are on initial position
-
-      // Nothing on the path of the king ?
-      // (And no checks; OK also if y==finalSquare)
-      let step = finalSquares[castleSide][0] < y ? -1 : 1;
-      for (i=y; i!=finalSquares[castleSide][0]; i+=step)
-      {
-        if (this.isAttacked([x,i], [oppCol]) || (this.board[x][i] != V.EMPTY &&
-          // NOTE: next check is enough, because of chessboard constraints
-          (this.getColor(x,i) != c
-            || ![V.KING,V.ROOK].includes(this.getPiece(x,i)))))
-        {
+
+      // Nothing on the path of the king ? (and no checks)
+      const finDist = finalSquares[castleSide][0] - y;
+      let step = finDist / Math.max(1, Math.abs(finDist));
+      i = y;
+      do {
+        if (
+          (!castleInCheck && this.isAttacked([x, i], oppCol)) ||
+          (this.board[x][i] != V.EMPTY &&
+            // NOTE: next check is enough, because of chessboard constraints
+            (this.getColor(x, i) != c ||
+              ![V.KING, castlingPiece].includes(this.getPiece(x, i))))
+        ) {
           continue castlingCheck;
         }
-      }
+        i += step;
+      } while (i != finalSquares[castleSide][0]);
 
       // Nothing on the path to the rook?
       step = castleSide == 0 ? -1 : 1;
-      for (i = y + step; i != this.INIT_COL_ROOK[c][castleSide]; i += step)
-      {
-        if (this.board[x][i] != V.EMPTY)
-          continue castlingCheck;
+      for (i = y + step; i != rookPos; i += step) {
+        if (this.board[x][i] != V.EMPTY) continue castlingCheck;
       }
-      const rookPos = this.INIT_COL_ROOK[c][castleSide];
 
       // Nothing on final squares, except maybe king and castling rook?
-      for (i=0; i<2; i++)
-      {
-        if (this.board[x][finalSquares[castleSide][i]] != V.EMPTY &&
-          this.getPiece(x,finalSquares[castleSide][i]) != V.KING &&
-          finalSquares[castleSide][i] != rookPos)
-        {
+      for (i = 0; i < 2; i++) {
+        if (
+          this.board[x][finalSquares[castleSide][i]] != V.EMPTY &&
+          this.getPiece(x, finalSquares[castleSide][i]) != V.KING &&
+          finalSquares[castleSide][i] != rookPos
+        {
           continue castlingCheck;
         }
       }
 
       // If this code is reached, castle is valid
-      moves.push( new Move({
-        appear: [
-          new PiPo({x:x,y:finalSquares[castleSide][0],p:V.KING,c:c}),
-          new PiPo({x:x,y:finalSquares[castleSide][1],p:V.ROOK,c:c})],
-        vanish: [
-          new PiPo({x:x,y:y,p:V.KING,c:c}),
-          new PiPo({x:x,y:rookPos,p:V.ROOK,c:c})],
-        end: Math.abs(y - rookPos) <= 2
-          ? {x:x, y:rookPos}
-          : {x:x, y:y + 2 * (castleSide==0 ? -1 : 1)}
-      }) );
+      moves.push(
+        new Move({
+          appear: [
+            new PiPo({ x: x, y: finalSquares[castleSide][0], p: V.KING, c: c }),
+            new PiPo({ x: x, y: finalSquares[castleSide][1], p: castlingPiece, c: c })
+          ],
+          vanish: [
+            new PiPo({ x: x, y: y, p: V.KING, c: c }),
+            new PiPo({ x: x, y: rookPos, p: castlingPiece, c: c })
+          ],
+          end:
+            Math.abs(y - rookPos) <= 2
+              ? { x: x, y: rookPos }
+              : { x: x, y: y + 2 * (castleSide == 0 ? -1 : 1) }
+        })
+      );
     }
 
     return moves;
@@ -809,16 +915,13 @@ export const ChessRules = class ChessRules
   // MOVES VALIDATION
 
   // For the interface: possible moves for the current turn from square sq
-  getPossibleMovesFrom(sq)
-  {
-    return this.filterValid( this.getPotentialMovesFrom(sq) );
+  getPossibleMovesFrom(sq) {
+    return this.filterValid(this.getPotentialMovesFrom(sq));
   }
 
   // TODO: promotions (into R,B,N,Q) should be filtered only once
-  filterValid(moves)
-  {
-    if (moves.length == 0)
-      return [];
+  filterValid(moves) {
+    if (moves.length == 0) return [];
     const color = this.turn;
     return moves.filter(m => {
       this.play(m);
@@ -830,20 +933,16 @@ export const ChessRules = class ChessRules
 
   // Search for all valid moves considering current turn
   // (for engine and game end)
-  getAllValidMoves()
-  {
+  getAllValidMoves() {
     const color = this.turn;
-    const oppCol = V.GetOppCol(color);
     let potentialMoves = [];
-    for (let i=0; i<V.size.x; i++)
-    {
-      for (let j=0; j<V.size.y; j++)
-      {
-        // Next condition "!= oppCol" to work with checkered variant
-        if (this.board[i][j] != V.EMPTY && this.getColor(i,j) != oppCol)
-        {
-          Array.prototype.push.apply(potentialMoves,
-            this.getPotentialMovesFrom([i,j]));
+    for (let i = 0; i < V.size.x; i++) {
+      for (let j = 0; j < V.size.y; j++) {
+        if (this.getColor(i, j) == color) {
+          Array.prototype.push.apply(
+            potentialMoves,
+            this.getPotentialMovesFrom([i, j])
+          );
         }
       }
     }
@@ -851,23 +950,15 @@ export const ChessRules = class ChessRules
   }
 
   // Stop at the first move found
-  atLeastOneMove()
-  {
+  atLeastOneMove() {
     const color = this.turn;
-    const oppCol = V.GetOppCol(color);
-    for (let i=0; i<V.size.x; i++)
-    {
-      for (let j=0; j<V.size.y; j++)
-      {
-        if (this.board[i][j] != V.EMPTY && this.getColor(i,j) != oppCol)
-        {
-          const moves = this.getPotentialMovesFrom([i,j]);
-          if (moves.length > 0)
-          {
-            for (let k=0; k<moves.length; k++)
-            {
-              if (this.filterValid([moves[k]]).length > 0)
-                return true;
+    for (let i = 0; i < V.size.x; i++) {
+      for (let j = 0; j < V.size.y; j++) {
+        if (this.getColor(i, j) == color) {
+          const moves = this.getPotentialMovesFrom([i, j]);
+          if (moves.length > 0) {
+            for (let k = 0; k < moves.length; k++) {
+              if (this.filterValid([moves[k]]).length > 0) return true;
             }
           }
         }
@@ -876,229 +967,216 @@ export const ChessRules = class ChessRules
     return false;
   }
 
-  // Check if pieces of color in 'colors' are attacking (king) on square x,y
-  isAttacked(sq, colors)
-  {
-    return (this.isAttackedByPawn(sq, colors)
-      || this.isAttackedByRook(sq, colors)
-      || this.isAttackedByKnight(sq, colors)
-      || this.isAttackedByBishop(sq, colors)
-      || this.isAttackedByQueen(sq, colors)
-      || this.isAttackedByKing(sq, colors));
-  }
-
-  // Is square x,y attacked by 'colors' pawns ?
-  isAttackedByPawn([x,y], colors)
-  {
-    for (let c of colors)
-    {
-      let pawnShift = (c=="w" ? 1 : -1);
-      if (x+pawnShift>=0 && x+pawnShift<V.size.x)
-      {
-        for (let i of [-1,1])
-        {
-          if (y+i>=0 && y+i<V.size.y && this.getPiece(x+pawnShift,y+i)==V.PAWN
-            && this.getColor(x+pawnShift,y+i)==c)
-          {
-            return true;
-          }
-        }
+  // Check if pieces of given color are attacking (king) on square x,y
+  isAttacked(sq, color) {
+    return (
+      this.isAttackedByPawn(sq, color) ||
+      this.isAttackedByRook(sq, color) ||
+      this.isAttackedByKnight(sq, color) ||
+      this.isAttackedByBishop(sq, color) ||
+      this.isAttackedByQueen(sq, color) ||
+      this.isAttackedByKing(sq, color)
+    );
+  }
+
+  // Generic method for non-pawn pieces ("sliding or jumping"):
+  // is x,y attacked by a piece of given color ?
+  isAttackedBySlideNJump([x, y], color, piece, steps, oneStep) {
+    for (let step of steps) {
+      let rx = x + step[0],
+          ry = y + step[1];
+      while (V.OnBoard(rx, ry) && this.board[rx][ry] == V.EMPTY && !oneStep) {
+        rx += step[0];
+        ry += step[1];
+      }
+      if (
+        V.OnBoard(rx, ry) &&
+        this.getPiece(rx, ry) == piece &&
+        this.getColor(rx, ry) == color
+      ) {
+        return true;
       }
     }
     return false;
   }
 
-  // Is square x,y attacked by 'colors' rooks ?
-  isAttackedByRook(sq, colors)
-  {
-    return this.isAttackedBySlideNJump(sq, colors, V.ROOK, V.steps[V.ROOK]);
+  // Is square x,y attacked by 'color' pawns ?
+  isAttackedByPawn([x, y], color) {
+    const pawnShift = (color == "w" ? 1 : -1);
+    if (x + pawnShift >= 0 && x + pawnShift < V.size.x) {
+      for (let i of [-1, 1]) {
+        if (
+          y + i >= 0 &&
+          y + i < V.size.y &&
+          this.getPiece(x + pawnShift, y + i) == V.PAWN &&
+          this.getColor(x + pawnShift, y + i) == color
+        ) {
+          return true;
+        }
+      }
+    }
+    return false;
   }
 
-  // Is square x,y attacked by 'colors' knights ?
-  isAttackedByKnight(sq, colors)
-  {
-    return this.isAttackedBySlideNJump(sq, colors,
-      V.KNIGHT, V.steps[V.KNIGHT], "oneStep");
+  // Is square x,y attacked by 'color' rooks ?
+  isAttackedByRook(sq, color) {
+    return this.isAttackedBySlideNJump(sq, color, V.ROOK, V.steps[V.ROOK]);
   }
 
-  // Is square x,y attacked by 'colors' bishops ?
-  isAttackedByBishop(sq, colors)
-  {
-    return this.isAttackedBySlideNJump(sq, colors, V.BISHOP, V.steps[V.BISHOP]);
+  // Is square x,y attacked by 'color' knights ?
+  isAttackedByKnight(sq, color) {
+    return this.isAttackedBySlideNJump(
+      sq,
+      color,
+      V.KNIGHT,
+      V.steps[V.KNIGHT],
+      "oneStep"
+    );
   }
 
-  // Is square x,y attacked by 'colors' queens ?
-  isAttackedByQueen(sq, colors)
-  {
-    return this.isAttackedBySlideNJump(sq, colors, V.QUEEN,
-      V.steps[V.ROOK].concat(V.steps[V.BISHOP]));
+  // Is square x,y attacked by 'color' bishops ?
+  isAttackedByBishop(sq, color) {
+    return this.isAttackedBySlideNJump(sq, color, V.BISHOP, V.steps[V.BISHOP]);
   }
 
-  // Is square x,y attacked by 'colors' king(s) ?
-  isAttackedByKing(sq, colors)
-  {
-    return this.isAttackedBySlideNJump(sq, colors, V.KING,
-      V.steps[V.ROOK].concat(V.steps[V.BISHOP]), "oneStep");
+  // Is square x,y attacked by 'color' queens ?
+  isAttackedByQueen(sq, color) {
+    return this.isAttackedBySlideNJump(
+      sq,
+      color,
+      V.QUEEN,
+      V.steps[V.ROOK].concat(V.steps[V.BISHOP])
+    );
   }
 
-  // Generic method for non-pawn pieces ("sliding or jumping"):
-  // is x,y attacked by a piece of color in array 'colors' ?
-  isAttackedBySlideNJump([x,y], colors, piece, steps, oneStep)
-  {
-    for (let step of steps)
-    {
-      let rx = x+step[0], ry = y+step[1];
-      while (V.OnBoard(rx,ry) && this.board[rx][ry] == V.EMPTY && !oneStep)
-      {
-        rx += step[0];
-        ry += step[1];
-      }
-      if (V.OnBoard(rx,ry) && this.getPiece(rx,ry) === piece
-        && colors.includes(this.getColor(rx,ry)))
-      {
-        return true;
-      }
-    }
-    return false;
+  // Is square x,y attacked by 'color' king(s) ?
+  isAttackedByKing(sq, color) {
+    return this.isAttackedBySlideNJump(
+      sq,
+      color,
+      V.KING,
+      V.steps[V.ROOK].concat(V.steps[V.BISHOP]),
+      "oneStep"
+    );
   }
 
   // Is color under check after his move ?
-  underCheck(color)
-  {
-    return this.isAttacked(this.kingPos[color], [V.GetOppCol(color)]);
+  underCheck(color) {
+    return this.isAttacked(this.kingPos[color], V.GetOppCol(color));
   }
 
   /////////////////
   // MOVES PLAYING
 
   // Apply a move on board
-  static PlayOnBoard(board, move)
-  {
-    for (let psq of move.vanish)
-      board[psq.x][psq.y] = V.EMPTY;
-    for (let psq of move.appear)
-      board[psq.x][psq.y] = psq.c + psq.p;
+  static PlayOnBoard(board, move) {
+    for (let psq of move.vanish) board[psq.x][psq.y] = V.EMPTY;
+    for (let psq of move.appear) board[psq.x][psq.y] = psq.c + psq.p;
   }
   // Un-apply the played move
-  static UndoOnBoard(board, move)
-  {
-    for (let psq of move.appear)
-      board[psq.x][psq.y] = V.EMPTY;
-    for (let psq of move.vanish)
-      board[psq.x][psq.y] = psq.c + psq.p;
+  static UndoOnBoard(board, move) {
+    for (let psq of move.appear) board[psq.x][psq.y] = V.EMPTY;
+    for (let psq of move.vanish) board[psq.x][psq.y] = psq.c + psq.p;
+  }
+
+  prePlay() {}
+
+  play(move) {
+    // DEBUG:
+//    if (!this.states) this.states = [];
+//    const stateFen = this.getFen() + JSON.stringify(this.kingPos);
+//    this.states.push(stateFen);
+
+    this.prePlay(move);
+    if (V.HasFlags) move.flags = JSON.stringify(this.aggregateFlags()); //save flags (for undo)
+    if (V.HasEnpassant) this.epSquares.push(this.getEpSquare(move));
+    V.PlayOnBoard(this.board, move);
+    this.turn = V.GetOppCol(this.turn);
+    this.movesCount++;
+    this.postPlay(move);
+  }
+
+  updateCastleFlags(move, piece) {
+    const c = V.GetOppCol(this.turn);
+    const firstRank = (c == "w" ? V.size.x - 1 : 0);
+    // Update castling flags if rooks are moved
+    const oppCol = V.GetOppCol(c);
+    const oppFirstRank = V.size.x - 1 - firstRank;
+    if (piece == V.KING && move.appear.length > 0)
+      this.castleFlags[c] = [V.size.y, V.size.y];
+    else if (
+      move.start.x == firstRank && //our rook moves?
+      this.castleFlags[c].includes(move.start.y)
+    ) {
+      const flagIdx = (move.start.y == this.castleFlags[c][0] ? 0 : 1);
+      this.castleFlags[c][flagIdx] = V.size.y;
+    }
+    // NOTE: not "else if" because a rook could take an opposing rook
+    if (
+      move.end.x == oppFirstRank && //we took opponent rook?
+      this.castleFlags[oppCol].includes(move.end.y)
+    ) {
+      const flagIdx = (move.end.y == this.castleFlags[oppCol][0] ? 0 : 1);
+      this.castleFlags[oppCol][flagIdx] = V.size.y;
+    }
   }
 
   // After move is played, update variables + flags
-  updateVariables(move)
-  {
+  postPlay(move) {
+    const c = V.GetOppCol(this.turn);
     let piece = undefined;
-    let c = undefined;
     if (move.vanish.length >= 1)
-    {
       // Usual case, something is moved
       piece = move.vanish[0].p;
-      c = move.vanish[0].c;
-    }
     else
-    {
       // Crazyhouse-like variants
       piece = move.appear[0].p;
-      c = move.appear[0].c;
-    }
-    if (c == "c") //if (!["w","b"].includes(c))
-    {
-      // 'c = move.vanish[0].c' doesn't work for Checkered
-      c = V.GetOppCol(this.turn);
-    }
-    const firstRank = (c == "w" ? V.size.x-1 : 0);
 
     // Update king position + flags
-    if (piece == V.KING && move.appear.length > 0)
-    {
+    if (piece == V.KING && move.appear.length > 0) {
       this.kingPos[c][0] = move.appear[0].x;
       this.kingPos[c][1] = move.appear[0].y;
-      if (V.HasFlags)
-        this.castleFlags[c] = [false,false];
       return;
     }
-    if (V.HasFlags)
-    {
-      // Update castling flags if rooks are moved
-      const oppCol = V.GetOppCol(c);
-      const oppFirstRank = (V.size.x-1) - firstRank;
-      if (move.start.x == firstRank //our rook moves?
-        && this.INIT_COL_ROOK[c].includes(move.start.y))
-      {
-        const flagIdx = (move.start.y == this.INIT_COL_ROOK[c][0] ? 0 : 1);
-        this.castleFlags[c][flagIdx] = false;
-      }
-      else if (move.end.x == oppFirstRank //we took opponent rook?
-        && this.INIT_COL_ROOK[oppCol].includes(move.end.y))
-      {
-        const flagIdx = (move.end.y == this.INIT_COL_ROOK[oppCol][0] ? 0 : 1);
-        this.castleFlags[oppCol][flagIdx] = false;
-      }
-    }
-  }
-
-  // After move is undo-ed *and flags resetted*, un-update other variables
-  // TODO: more symmetry, by storing flags increment in move (?!)
-  unupdateVariables(move)
-  {
-    // (Potentially) Reset king position
-    const c = this.getColor(move.start.x,move.start.y);
-    if (this.getPiece(move.start.x,move.start.y) == V.KING)
-      this.kingPos[c] = [move.start.x, move.start.y];
+    if (V.HasCastle) this.updateCastleFlags(move, piece);
   }
 
-  play(move)
-  {
-    // DEBUG:
-//    if (!this.states) this.states = [];
-//    const stateFen = this.getBaseFen() + this.getTurnFen() + this.getFlagsFen();
-//    this.states.push(stateFen);
+  preUndo() {}
 
-    if (V.HasFlags)
-      move.flags = JSON.stringify(this.aggregateFlags()); //save flags (for undo)
-    if (V.HasEnpassant)
-      this.epSquares.push( this.getEpSquare(move) );
-    V.PlayOnBoard(this.board, move);
-    this.turn = V.GetOppCol(this.turn);
-    this.movesCount++;
-    this.updateVariables(move);
-  }
-
-  undo(move)
-  {
-    if (V.HasEnpassant)
-      this.epSquares.pop();
-    if (V.HasFlags)
-      this.disaggregateFlags(JSON.parse(move.flags));
+  undo(move) {
+    this.preUndo(move);
+    if (V.HasEnpassant) this.epSquares.pop();
+    if (V.HasFlags) this.disaggregateFlags(JSON.parse(move.flags));
     V.UndoOnBoard(this.board, move);
     this.turn = V.GetOppCol(this.turn);
     this.movesCount--;
-    this.unupdateVariables(move);
+    this.postUndo(move);
 
     // DEBUG:
-//    const stateFen = this.getBaseFen() + this.getTurnFen() + this.getFlagsFen();
+//    const stateFen = this.getFen() + JSON.stringify(this.kingPos);
 //    if (stateFen != this.states[this.states.length-1]) debugger;
 //    this.states.pop();
   }
 
+  // After move is undo-ed *and flags resetted*, un-update other variables
+  // TODO: more symmetry, by storing flags increment in move (?!)
+  postUndo(move) {
+    // (Potentially) Reset king position
+    const c = this.getColor(move.start.x, move.start.y);
+    if (this.getPiece(move.start.x, move.start.y) == V.KING)
+      this.kingPos[c] = [move.start.x, move.start.y];
+  }
+
   ///////////////
   // END OF GAME
 
   // What is the score ? (Interesting if game is over)
-  getCurrentScore()
-  {
-    if (this.atLeastOneMove()) // game not over
-      return "*";
-
+  getCurrentScore() {
+    if (this.atLeastOneMove()) return "*";
     // Game over
     const color = this.turn;
     // No valid move: stalemate or checkmate?
-    if (!this.isAttacked(this.kingPos[color], [V.GetOppCol(color)]))
-      return "1/2";
+    if (!this.underCheck(color)) return "1/2";
     // OK, checkmate
     return (color == "w" ? "0-1" : "1-0");
   }
@@ -1107,177 +1185,158 @@ export const ChessRules = class ChessRules
   // ENGINE PLAY
 
   // Pieces values
-  static get VALUES()
-  {
+  static get VALUES() {
     return {
-      'p': 1,
-      'r': 5,
-      'n': 3,
-      'b': 3,
-      'q': 9,
-      'k': 1000
+      p: 1,
+      r: 5,
+      n: 3,
+      b: 3,
+      q: 9,
+      k: 1000
     };
   }
 
   // "Checkmate" (unreachable eval)
-  static get INFINITY() { return 9999; }
+  static get INFINITY() {
+    return 9999;
+  }
 
   // At this value or above, the game is over
-  static get THRESHOLD_MATE() { return V.INFINITY; }
+  static get THRESHOLD_MATE() {
+    return V.INFINITY;
+  }
 
-  // Search depth: 2 for high branching factor, 4 for small (Loser chess, eg.)
-  static get SEARCH_DEPTH() { return 3; }
+  // Search depth: 1,2 for high branching factor, 4 for small (Loser chess, eg.)
+  static get SEARCH_DEPTH() {
+    return 3;
+  }
 
-  // Assumption: at least one legal move
-  // NOTE: works also for extinction chess because depth is 3...
-  getComputerMove()
-  {
+  getComputerMove() {
     const maxeval = V.INFINITY;
     const color = this.turn;
-    // Some variants may show a bigger moves list to the human (Switching),
-    // thus the argument "computer" below (which is generally ignored)
-    let moves1 = this.getAllValidMoves("computer");
+    let moves1 = this.getAllValidMoves();
 
-    // Can I mate in 1 ? (for Magnetic & Extinction)
-    for (let i of shuffle(ArrayFun.range(moves1.length)))
-    {
-      this.play(moves1[i]);
-      let finish = (Math.abs(this.evalPosition()) >= V.THRESHOLD_MATE);
-      if (!finish)
-      {
-        const score = this.getCurrentScore();
-        if (["1-0","0-1"].includes(score))
-          finish = true;
-      }
-      this.undo(moves1[i]);
-      if (finish)
-        return moves1[i];
-    }
+    if (moves1.length == 0)
+      // TODO: this situation should not happen
+      return null;
 
-    // Rank moves using a min-max at depth 2
-    for (let i=0; i<moves1.length; i++)
-    {
-      // Initial self evaluation is very low: "I'm checkmated"
-      moves1[i].eval = (color=="w" ? -1 : 1) * maxeval;
+    // Rank moves using a min-max at depth 2 (if search_depth >= 2!)
+    for (let i = 0; i < moves1.length; i++) {
       this.play(moves1[i]);
       const score1 = this.getCurrentScore();
-      let eval2 = undefined;
-      if (score1 == "*")
-      {
-        // Initial enemy evaluation is very low too, for him
-        eval2 = (color=="w" ? 1 : -1) * maxeval;
-        // Second half-move:
-        let moves2 = this.getAllValidMoves("computer");
-        for (let j=0; j<moves2.length; j++)
-        {
-          this.play(moves2[j]);
-          const score2 = this.getCurrentScore();
-          const evalPos = score2 == "*"
-            ? this.evalPosition()
-            : (score2=="1/2" ? 0 : (score2=="1-0" ? 1 : -1) * maxeval);
-          if ((color == "w" && evalPos < eval2)
-            || (color=="b" && evalPos > eval2))
-          {
-            eval2 = evalPos;
-          }
-          this.undo(moves2[j]);
+      if (score1 != "*") {
+        moves1[i].eval =
+          score1 == "1/2"
+            ? 0
+            : (score1 == "1-0" ? 1 : -1) * maxeval;
+      }
+      if (V.SEARCH_DEPTH == 1 || score1 != "*") {
+        if (!moves1[i].eval) moves1[i].eval = this.evalPosition();
+        this.undo(moves1[i]);
+        continue;
+      }
+      // Initial self evaluation is very low: "I'm checkmated"
+      moves1[i].eval = (color == "w" ? -1 : 1) * maxeval;
+      // Initial enemy evaluation is very low too, for him
+      let eval2 = (color == "w" ? 1 : -1) * maxeval;
+      // Second half-move:
+      let moves2 = this.getAllValidMoves();
+      for (let j = 0; j < moves2.length; j++) {
+        this.play(moves2[j]);
+        const score2 = this.getCurrentScore();
+        let evalPos = 0; //1/2 value
+        switch (score2) {
+          case "*":
+            evalPos = this.evalPosition();
+            break;
+          case "1-0":
+            evalPos = maxeval;
+            break;
+          case "0-1":
+            evalPos = -maxeval;
+            break;
         }
+        if (
+          (color == "w" && evalPos < eval2) ||
+          (color == "b" && evalPos > eval2)
+        ) {
+          eval2 = evalPos;
+        }
+        this.undo(moves2[j]);
       }
-      else
-        eval2 = (score1=="1/2" ? 0 : (score1=="1-0" ? 1 : -1) * maxeval);
-      if ((color=="w" && eval2 > moves1[i].eval)
-        || (color=="b" && eval2 < moves1[i].eval))
-      {
+      if (
+        (color == "w" && eval2 > moves1[i].eval) ||
+        (color == "b" && eval2 < moves1[i].eval)
+      ) {
         moves1[i].eval = eval2;
       }
       this.undo(moves1[i]);
     }
-    moves1.sort( (a,b) => { return (color=="w" ? 1 : -1) * (b.eval - a.eval); });
-
-    let candidates = [0]; //indices of candidates moves
-    for (let j=1; j<moves1.length && moves1[j].eval == moves1[0].eval; j++)
-      candidates.push(j);
-    let currentBest = moves1[sample(candidates)];
-
-    // From here, depth >= 3: may take a while, so we control time
-    const timeStart = Date.now();
+    moves1.sort((a, b) => {
+      return (color == "w" ? 1 : -1) * (b.eval - a.eval);
+    });
+//    console.log(moves1.map(m => { return [this.getNotation(m), m.eval]; }));
 
     // Skip depth 3+ if we found a checkmate (or if we are checkmated in 1...)
-    if (V.SEARCH_DEPTH >= 3 && Math.abs(moves1[0].eval) < V.THRESHOLD_MATE)
-    {
-      for (let i=0; i<moves1.length; i++)
-      {
-        if (Date.now()-timeStart >= 5000) //more than 5 seconds
-          return currentBest; //depth 2 at least
+    if (V.SEARCH_DEPTH >= 3 && Math.abs(moves1[0].eval) < V.THRESHOLD_MATE) {
+      for (let i = 0; i < moves1.length; i++) {
         this.play(moves1[i]);
         // 0.1 * oldEval : heuristic to avoid some bad moves (not all...)
-        moves1[i].eval = 0.1*moves1[i].eval +
-          this.alphabeta(V.SEARCH_DEPTH-1, -maxeval, maxeval);
+        moves1[i].eval =
+          0.1 * moves1[i].eval +
+          this.alphabeta(V.SEARCH_DEPTH - 1, -maxeval, maxeval);
         this.undo(moves1[i]);
       }
-      moves1.sort( (a,b) => {
-        return (color=="w" ? 1 : -1) * (b.eval - a.eval); });
+      moves1.sort((a, b) => {
+        return (color == "w" ? 1 : -1) * (b.eval - a.eval);
+      });
     }
-    else
-      return currentBest;
-//    console.log(moves1.map(m => { return [this.getNotation(m), m.eval]; }));
 
-    candidates = [0];
-    for (let j=1; j<moves1.length && moves1[j].eval == moves1[0].eval; j++)
-      candidates.push(j);
-    return moves1[sample(candidates)];
+    let candidates = [0];
+    for (let i = 1; i < moves1.length && moves1[i].eval == moves1[0].eval; i++)
+      candidates.push(i);
+    return moves1[candidates[randInt(candidates.length)]];
   }
 
-  alphabeta(depth, alpha, beta)
-  {
+  alphabeta(depth, alpha, beta) {
     const maxeval = V.INFINITY;
     const color = this.turn;
     const score = this.getCurrentScore();
     if (score != "*")
-      return (score=="1/2" ? 0 : (score=="1-0" ? 1 : -1) * maxeval);
-    if (depth == 0)
-      return this.evalPosition();
-    const moves = this.getAllValidMoves("computer");
-    let v = color=="w" ? -maxeval : maxeval;
-    if (color == "w")
-    {
-      for (let i=0; i<moves.length; i++)
-      {
+      return score == "1/2" ? 0 : (score == "1-0" ? 1 : -1) * maxeval;
+    if (depth == 0) return this.evalPosition();
+    const moves = this.getAllValidMoves();
+    let v = color == "w" ? -maxeval : maxeval;
+    if (color == "w") {
+      for (let i = 0; i < moves.length; i++) {
         this.play(moves[i]);
-        v = Math.max(v, this.alphabeta(depth-1, alpha, beta));
+        v = Math.max(v, this.alphabeta(depth - 1, alpha, beta));
         this.undo(moves[i]);
         alpha = Math.max(alpha, v);
-        if (alpha >= beta)
-          break; //beta cutoff
+        if (alpha >= beta) break; //beta cutoff
       }
     }
-    else //color=="b"
-    {
-      for (let i=0; i<moves.length; i++)
-      {
+    else {
+      // color=="b"
+      for (let i = 0; i < moves.length; i++) {
         this.play(moves[i]);
-        v = Math.min(v, this.alphabeta(depth-1, alpha, beta));
+        v = Math.min(v, this.alphabeta(depth - 1, alpha, beta));
         this.undo(moves[i]);
         beta = Math.min(beta, v);
-        if (alpha >= beta)
-          break; //alpha cutoff
+        if (alpha >= beta) break; //alpha cutoff
       }
     }
     return v;
   }
 
-  evalPosition()
-  {
+  evalPosition() {
     let evaluation = 0;
     // Just count material for now
-    for (let i=0; i<V.size.x; i++)
-    {
-      for (let j=0; j<V.size.y; j++)
-      {
-        if (this.board[i][j] != V.EMPTY)
-        {
-          const sign = this.getColor(i,j) == "w" ? 1 : -1;
-          evaluation += sign * V.VALUES[this.getPiece(i,j)];
+    for (let i = 0; i < V.size.x; i++) {
+      for (let j = 0; j < V.size.y; j++) {
+        if (this.board[i][j] != V.EMPTY) {
+          const sign = this.getColor(i, j) == "w" ? 1 : -1;
+          evaluation += sign * V.VALUES[this.getPiece(i, j)];
         }
       }
     }
@@ -1290,37 +1349,34 @@ export const ChessRules = class ChessRules
 
   // Context: just before move is played, turn hasn't changed
   // TODO: un-ambiguous notation (switch on piece type, check directions...)
-  getNotation(move)
-  {
-    if (move.appear.length == 2 && move.appear[0].p == V.KING) //castle
-      return (move.end.y < move.start.y ? "0-0-0" : "0-0");
+  getNotation(move) {
+    if (move.appear.length == 2 && move.appear[0].p == V.KING)
+      // Castle
+      return move.end.y < move.start.y ? "0-0-0" : "0-0";
 
     // Translate final square
     const finalSquare = V.CoordsToSquare(move.end);
 
     const piece = this.getPiece(move.start.x, move.start.y);
-    if (piece == V.PAWN)
-    {
+    if (piece == V.PAWN) {
       // Pawn move
       let notation = "";
-      if (move.vanish.length > move.appear.length)
-      {
+      if (move.vanish.length > move.appear.length) {
         // Capture
         const startColumn = V.CoordToColumn(move.start.y);
         notation = startColumn + "x" + finalSquare;
       }
-      else //no capture
-        notation = finalSquare;
-      if (move.appear.length > 0 && move.appear[0].p != V.PAWN) //promotion
+      else notation = finalSquare;
+      if (move.appear.length > 0 && move.appear[0].p != V.PAWN)
+        // Promotion
         notation += "=" + move.appear[0].p.toUpperCase();
       return notation;
     }
-
-    else
-    {
-      // Piece movement
-      return piece.toUpperCase() +
-        (move.vanish.length > move.appear.length ? "x" : "") + finalSquare;
-    }
-  }
-}
+    // Piece movement
+    return (
+      piece.toUpperCase() +
+      (move.vanish.length > move.appear.length ? "x" : "") +
+      finalSquare
+    );
+  }
+};