Update starting point in optimParams::run()
[morpheus.git] / pkg / R / optimParams.R
index a5818ed..039070c 100644 (file)
 #' o$f( o$linArgs(par0) )
 #' o$f( o$linArgs(par1) )
 #' @export
-optimParams <- function(X, Y, K, link=c("logit","probit"))
+optimParams <- function(X, Y, K, link=c("logit","probit"), M=NULL)
 {
-       # Check arguments
+  # Check arguments
   if (!is.matrix(X) || any(is.na(X)))
     stop("X: numeric matrix, no NAs")
-  if (!is.numeric(Y) || any(is.na(Y)) || any(Y!=0 | Y!=1))
+  if (!is.numeric(Y) || any(is.na(Y)) || any(Y!=0 & Y!=1))
     stop("Y: binary vector with 0 and 1 only")
-       link <- match.arg(link)
+  link <- match.arg(link)
   if (!is.numeric(K) || K!=floor(K) || K < 2)
     stop("K: integer >= 2")
 
-       # Build and return optimization algorithm object
-       methods::new("OptimParams", "li"=link, "X"=X,
-    "Y"=as.integer(Y), "K"=as.integer(K))
+  if (is.null(M))
+  {
+    # Precompute empirical moments
+    Mtmp <- computeMoments(X, Y)
+    M1 <- as.double(Mtmp[[1]])
+    M2 <- as.double(Mtmp[[2]])
+    M3 <- as.double(Mtmp[[3]])
+    M <- c(M1, M2, M3)
+  }
+  else
+    M <- c(M[[1]], M[[2]], M[[3]])
+
+  # Build and return optimization algorithm object
+  methods::new("OptimParams", "li"=link, "X"=X,
+    "Y"=as.integer(Y), "K"=as.integer(K), "Mhat"=as.double(M))
 }
 
 #' Encapsulated optimization for p (proportions), β and b (regression parameters)
@@ -60,69 +72,68 @@ optimParams <- function(X, Y, K, link=c("logit","probit"))
 #' @field W Weights matrix (iteratively refined)
 #'
 setRefClass(
-       Class = "OptimParams",
+  Class = "OptimParams",
 
-       fields = list(
-               # Inputs
-               li = "character", #link function
-               X = "matrix",
-               Y = "numeric",
+  fields = list(
+    # Inputs
+    li = "character", #link function
+    X = "matrix",
+    Y = "numeric",
     Mhat = "numeric", #vector of empirical moments
-               # Dimensions
-               K = "integer",
+    # Dimensions
+    K = "integer",
     n = "integer",
-               d = "integer",
+    d = "integer",
     # Weights matrix (generalized least square)
     W = "matrix"
-       ),
+  ),
 
-       methods = list(
-               initialize = function(...)
-               {
-                       "Check args and initialize K, d, W"
+  methods = list(
+    initialize = function(...)
+    {
+      "Check args and initialize K, d, W"
 
       callSuper(...)
-                       if (!hasArg("X") || !hasArg("Y") || !hasArg("K") || !hasArg("li"))
-                               stop("Missing arguments")
-
-      # Precompute empirical moments
-      M <- computeMoments(optargs$X,optargs$Y)
-      M1 <- as.double(M[[1]])
-      M2 <- as.double(M[[2]])
-      M3 <- as.double(M[[3]])
-      Mhat <<- matrix(c(M1,M2,M3), ncol=1)
-
-                       n <<- nrow(X)
-                       d <<- length(M1)
-      W <<- diag(d+d^2+d^3) #initialize at W = Identity
-               },
-
-               expArgs = function(v)
-               {
-                       "Expand individual arguments from vector v into a list"
-
-                       list(
-                               # p: dimension K-1, need to be completed
-                               "p" = c(v[1:(K-1)], 1-sum(v[1:(K-1)])),
-                               "β" = matrix(v[K:(K+d*K-1)], ncol=K),
-                               "b" = v[(K+d*K):(K+(d+1)*K-1)])
-               },
-
-               linArgs = function(L)
-               {
-                       "Linearize vectors+matrices from list L into a vector"
-
-                       c(L$p[1:(K-1)], as.double(L$β), L$b)
-               },
+      if (!hasArg("X") || !hasArg("Y") || !hasArg("K")
+        || !hasArg("li") || !hasArg("Mhat"))
+      {
+        stop("Missing arguments")
+      }
+
+      n <<- nrow(X)
+      d <<- ncol(X)
+      # W will be initialized when calling run()
+    },
+
+    expArgs = function(v)
+    {
+      "Expand individual arguments from vector v into a list"
+
+      list(
+        # p: dimension K-1, need to be completed
+        "p" = c(v[1:(K-1)], 1-sum(v[1:(K-1)])),
+        "β" = t(matrix(v[K:(K+d*K-1)], ncol=d)),
+        "b" = v[(K+d*K):(K+(d+1)*K-1)])
+    },
+
+    linArgs = function(L)
+    {
+      "Linearize vectors+matrices from list L into a vector"
+
+      # β linearized row by row, to match derivatives order
+      c(L$p[1:(K-1)], as.double(t(L$β)), L$b)
+    },
 
     computeW = function(θ)
     {
-      dim <- d + d^2 + d^3
-      W <<- solve( matrix( .C("Compute_Omega",
-        X=as.double(X), Y=as.double(Y), M=as.double(Moments(θ)),
+      require(MASS)
+      dd <- d + d^2 + d^3
+      M <- Moments(θ)
+      Omega <- matrix( .C("Compute_Omega",
+        X=as.double(X), Y=as.integer(Y), M=as.double(M),
         pn=as.integer(n), pd=as.integer(d),
-        W=as.double(W), PACKAGE="morpheus")$W, nrow=dim, ncol=dim) )
-      NULL #avoid returning W
+        W=as.double(W), PACKAGE="morpheus")$W, nrow=dd, ncol=dd )
+      MASS::ginv(Omega)
     },
 
     Moments = function(θ)
@@ -130,141 +141,152 @@ setRefClass(
       "Vector of moments, of size d+d^2+d^3"
 
       p <- θ$p
-                       β <- θ$β
-                       λ <- sqrt(colSums(β^2))
-                       b <- θ$b
-
-                       # Tensorial products β^2 = β2 and β^3 = β3 must be computed from current β1
-                       β2 <- apply(β, 2, function(col) col %o% col)
-                       β3 <- apply(β, 2, function(col) col %o% col %o% col)
-
-                       matrix(c(
-                               β  %*% (p * .G(li,1,λ,b)),
-                               β2 %*% (p * .G(li,2,λ,b)),
-                               β3 %*% (p * .G(li,3,λ,b))), ncol=1)
+      β <- θ$β
+      λ <- sqrt(colSums(β^2))
+      b <- θ$b
+
+      # Tensorial products β^2 = β2 and β^3 = β3 must be computed from current β1
+      β2 <- apply(β, 2, function(col) col %o% col)
+      β3 <- apply(β, 2, function(col) col %o% col %o% col)
+
+      c(
+        β  %*% (p * .G(li,1,λ,b)),
+        β2 %*% (p * .G(li,2,λ,b)),
+        β3 %*% (p * .G(li,3,λ,b)))
     },
 
     f = function(θ)
     {
-                       "Product t(Mi - hat_Mi) W (Mi - hat_Mi) with Mi(theta)"
+      "Product t(hat_Mi - Mi) W (hat_Mi - Mi) with Mi(theta)"
 
-                       A <- Moments(θ) - Mhat
+      L <- expArgs(θ)
+      A <- as.matrix(Mhat - Moments(L))
       t(A) %*% W %*% A
     },
 
-               grad_f = function(θ)
-               {
-                       "Gradient of f, dimension (K-1) + d*K + K = (d+2)*K - 1"
+    grad_f = function(θ)
+    {
+      "Gradient of f, dimension (K-1) + d*K + K = (d+2)*K - 1"
 
-      -2 * t(grad_M(θ)) %*% W %*% (Mhat - Moments(θ))
+      L <- expArgs(θ)
+      -2 * t(grad_M(L)) %*% W %*% as.matrix(Mhat - Moments(L))
     },
 
     grad_M = function(θ)
     {
       "Gradient of the vector of moments, size (dim=)d+d^2+d^3 x K-1+K+d*K"
 
-      L <- expArgs(θ)
-                       p <- L$p
-                       β <- L$β
-                       λ <- sqrt(colSums(β^2))
-                       μ <- sweep(β, 2, λ, '/')
-                       b <- L$b
+      p <- θ$p
+      β <- θ$β
+      λ <- sqrt(colSums(β^2))
+      μ <- sweep(β, 2, λ, '/')
+      b <- θ$b
 
       res <- matrix(nrow=nrow(W), ncol=0)
 
-                       # Tensorial products β^2 = β2 and β^3 = β3 must be computed from current β1
-                       β2 <- apply(β, 2, function(col) col %o% col)
-                       β3 <- apply(β, 2, function(col) col %o% col %o% col)
+      # Tensorial products β^2 = β2 and β^3 = β3 must be computed from current β1
+      β2 <- apply(β, 2, function(col) col %o% col)
+      β3 <- apply(β, 2, function(col) col %o% col %o% col)
 
-                       # Some precomputations
-                       G1 = .G(li,1,λ,b)
-                       G2 = .G(li,2,λ,b)
-                       G3 = .G(li,3,λ,b)
-                       G4 = .G(li,4,λ,b)
-                       G5 = .G(li,5,λ,b)
+      # Some precomputations
+      G1 = .G(li,1,λ,b)
+      G2 = .G(li,2,λ,b)
+      G3 = .G(li,3,λ,b)
+      G4 = .G(li,4,λ,b)
+      G5 = .G(li,5,λ,b)
 
       # Gradient on p: K-1 columns, dim rows
-                       km1 = 1:(K-1)
-                       res <- cbind(res, rbind(
-        t( sweep(as.matrix(β [,km1]), 2, G1[km1], '*') - G1[K] * β [,K] ),
-        t( sweep(as.matrix(β2[,km1]), 2, G2[km1], '*') - G2[K] * β2[,K] ),
-        t( sweep(as.matrix(β3[,km1]), 2, G3[km1], '*') - G3[K] * β3[,K] )))
-
-      # TODO: understand derivatives order and match the one in optim init param
-                       for (i in 1:d)
-                       {
-                               # i determines the derivated matrix dβ[2,3]
-
-                               dβ_left <- sweep(β, 2, p * G3 * β[i,], '*')
-                               dβ_right <- matrix(0, nrow=d, ncol=K)
-                               block <- i
-                               dβ_right[block,] <- dβ_right[block,] + 1
-                               dβ <- dβ_left + sweep(dβ_right, 2,  p * G1, '*')
-
-                               dβ2_left <- sweep(β2, 2, p * G4 * β[i,], '*')
-                               dβ2_right <- do.call( rbind, lapply(1:d, function(j) {
-                                       sweep(dβ_right, 2, β[j,], '*')
-                               }) )
-                               block <- ((i-1)*d+1):(i*d)
-                               dβ2_right[block,] <- dβ2_right[block,] + β
-                               dβ2 <- dβ2_left + sweep(dβ2_right, 2, p * G2, '*')
-
-                               dβ3_left <- sweep(β3, 2, p * G5 * β[i,], '*')
-                               dβ3_right <- do.call( rbind, lapply(1:d, function(j) {
-                                       sweep(dβ2_right, 2, β[j,], '*')
-                               }) )
-                               block <- ((i-1)*d*d+1):(i*d*d)
-                               dβ3_right[block,] <- dβ3_right[block,] + β2
-                               dβ3 <- dβ3_left + sweep(dβ3_right, 2, p * G3, '*')
-
-                               res <- cbind(res, rbind(t(dβ), t(dβ2), t(dβ3)))
-                       }
+      km1 = 1:(K-1)
+      res <- cbind(res, rbind(
+        sweep(as.matrix(β [,km1]), 2, G1[km1], '*') - G1[K] * β [,K],
+        sweep(as.matrix(β2[,km1]), 2, G2[km1], '*') - G2[K] * β2[,K],
+        sweep(as.matrix(β3[,km1]), 2, G3[km1], '*') - G3[K] * β3[,K] ))
+
+      for (i in 1:d)
+      {
+        # i determines the derivated matrix dβ[2,3]
+
+        dβ_left <- sweep(β, 2, p * G3 * β[i,], '*')
+        dβ_right <- matrix(0, nrow=d, ncol=K)
+        block <- i
+        dβ_right[block,] <- dβ_right[block,] + 1
+        dβ <- dβ_left + sweep(dβ_right, 2,  p * G1, '*')
+
+        dβ2_left <- sweep(β2, 2, p * G4 * β[i,], '*')
+        dβ2_right <- do.call( rbind, lapply(1:d, function(j) {
+          sweep(dβ_right, 2, β[j,], '*')
+        }) )
+        block <- ((i-1)*d+1):(i*d)
+        dβ2_right[block,] <- dβ2_right[block,] + β
+        dβ2 <- dβ2_left + sweep(dβ2_right, 2, p * G2, '*')
+
+        dβ3_left <- sweep(β3, 2, p * G5 * β[i,], '*')
+        dβ3_right <- do.call( rbind, lapply(1:d, function(j) {
+          sweep(dβ2_right, 2, β[j,], '*')
+        }) )
+        block <- ((i-1)*d*d+1):(i*d*d)
+        dβ3_right[block,] <- dβ3_right[block,] + β2
+        dβ3 <- dβ3_left + sweep(dβ3_right, 2, p * G3, '*')
+
+        res <- cbind(res, rbind(dβ, dβ2, dβ3))
+      }
 
       # Gradient on b
-                       res <- cbind(res, rbind(
-                               t( sweep(β,  2, p * G2, '*') ),
-                               t( sweep(β2, 2, p * G3, '*') ),
-                               t( sweep(β3, 2, p * G4, '*') )))
+      res <- cbind(res, rbind(
+        sweep(β,  2, p * G2, '*'),
+        sweep(β2, 2, p * G3, '*'),
+        sweep(β3, 2, p * G4, '*') ))
 
-                       res
-               },
+      res
+    },
 
-               run = function(θ0)
-               {
-                       "Run optimization from θ0 with solver..."
+    run = function(θ0)
+    {
+      "Run optimization from θ0 with solver..."
 
-           if (!is.list(θ0))
-                   stop("θ0: list")
+      if (!is.list(θ0))
+        stop("θ0: list")
       if (is.null(θ0$β))
         stop("At least θ0$β must be provided")
-                       if (!is.matrix(θ0$β) || any(is.na(θ0$β)) || ncol(θ0$β) != K)
-                               stop("θ0$β: matrix, no NA, ncol == K")
+      if (!is.matrix(θ0$β) || any(is.na(θ0$β))
+        || nrow(θ0$β) != d || ncol(θ0$β) != K)
+      {
+        stop("θ0$β: matrix, no NA, nrow = d, ncol = K")
+      }
       if (is.null(θ0$p))
         θ0$p = rep(1/K, K-1)
-      else if (length(θ0$p) != K-1 || sum(θ0$p) > 1)
-        stop("θ0$p should contain positive integers and sum to < 1")
-      # Next test = heuristic to detect missing b (when matrix is called "beta")
-      if (is.null(θ0$b) || all(θ0$b == θ0$β))
+      else if (!is.numeric(θ0$p) || length(θ0$p) != K-1
+        || any(is.na(θ0$p)) || sum(θ0$p) > 1)
+      {
+        stop("θ0$p: length K-1, no NA, positive integers, sum to <= 1")
+      }
+      if (is.null(θ0$b))
         θ0$b = rep(0, K)
-      else if (any(is.na(θ0$b)))
-        stop("θ0$b cannot have missing values")
-
-                       op_res = constrOptim( linArgs(θ0), .self$f, .self$grad_f,
-                               ui=cbind(
-                                       rbind( rep(-1,K-1), diag(K-1) ),
-                                       matrix(0, nrow=K, ncol=(d+1)*K) ),
-                               ci=c(-1,rep(0,K-1)) )
-
-      # debug:
-      #computeW(expArgs(op_res$par))
-      #print(W)
-      # We get a first non-trivial estimation of W
-      # TODO: loop, this redefine f, so that we can call constrOptim again...
-      # Stopping condition? N iterations? Delta <= epsilon ?
-
-                       expArgs(op_res$par)
-               }
-       )
+      else if (!is.numeric(θ0$b) || length(θ0$b) != K || any(is.na(θ0$b)))
+        stop("θ0$b: length K, no NA")
+
+      # (Re)Set W to identity, to allow several run from the same object
+      W <<- diag(d+d^2+d^3)
+
+      loopMax <- 2 #TODO: loopMax = 3 ? Seems not improving...
+      x_init <- linArgs(θ0)
+      for (loop in 1:loopMax)
+      {
+        op_res = constrOptim( x_init, .self$f, .self$grad_f,
+          ui=cbind(
+            rbind( rep(-1,K-1), diag(K-1) ),
+            matrix(0, nrow=K, ncol=(d+1)*K) ),
+          ci=c(-1,rep(0,K-1)) )
+        if (loop < loopMax) #avoid computing an extra W
+          W <<- computeW(expArgs(op_res$par))
+        x_init <- op_res$par
+        #print(op_res$value) #debug
+        #print(expArgs(op_res$par)) #debug
+      }
+
+      expArgs(op_res$par)
+    }
+  )
 )
 
 # Compute vectorial E[g^{(order)}(<β,x> + b)] with x~N(0,Id) (integral in R^d)
@@ -278,9 +300,9 @@ setRefClass(
 #
 .G <- function(link, order, λ, b)
 {
-       # NOTE: weird "integral divergent" error on inputs:
-       # link="probit"; order=2; λ=c(531.8099,586.8893,523.5816); b=c(-118.512674,-3.488020,2.109969)
-       # Switch to pracma package for that (but it seems slow...)
+  # NOTE: weird "integral divergent" error on inputs:
+  # link="probit"; order=2; λ=c(531.8099,586.8893,523.5816); b=c(-118.512674,-3.488020,2.109969)
+  # Switch to pracma package for that (but it seems slow...)
   sapply( seq_along(λ), function(k) {
     res <- NULL
     tryCatch({
@@ -303,24 +325,24 @@ setRefClass(
 # Derivatives list: g^(k)(x) for links 'logit' and 'probit'
 #
 .deriv <- list(
-       "probit"=list(
-               # 'probit' derivatives list;
-               # NOTE: exact values for the integral E[g^(k)(λz+b)] could be computed
-               function(x) exp(-x^2/2)/(sqrt(2*pi)),                     #g'
-               function(x) exp(-x^2/2)/(sqrt(2*pi)) *  -x,               #g''
-               function(x) exp(-x^2/2)/(sqrt(2*pi)) * ( x^2 - 1),        #g^(3)
-               function(x) exp(-x^2/2)/(sqrt(2*pi)) * (-x^3 + 3*x),      #g^(4)
-               function(x) exp(-x^2/2)/(sqrt(2*pi)) * ( x^4 - 6*x^2 + 3) #g^(5)
-       ),
-       "logit"=list(
-               # Sigmoid derivatives list, obtained with http://www.derivative-calculator.net/
-               # @seealso http://www.ece.uc.edu/~aminai/papers/minai_sigmoids_NN93.pdf
-               function(x) {e=exp(x); .zin(e                                    /(e+1)^2)}, #g'
-               function(x) {e=exp(x); .zin(e*(-e   + 1)                         /(e+1)^3)}, #g''
-               function(x) {e=exp(x); .zin(e*( e^2 - 4*e    + 1)                /(e+1)^4)}, #g^(3)
-               function(x) {e=exp(x); .zin(e*(-e^3 + 11*e^2 - 11*e   + 1)       /(e+1)^5)}, #g^(4)
-               function(x) {e=exp(x); .zin(e*( e^4 - 26*e^3 + 66*e^2 - 26*e + 1)/(e+1)^6)}  #g^(5)
-       )
+  "probit"=list(
+    # 'probit' derivatives list;
+    # NOTE: exact values for the integral E[g^(k)(λz+b)] could be computed
+    function(x) exp(-x^2/2)/(sqrt(2*pi)),                     #g'
+    function(x) exp(-x^2/2)/(sqrt(2*pi)) *  -x,               #g''
+    function(x) exp(-x^2/2)/(sqrt(2*pi)) * ( x^2 - 1),        #g^(3)
+    function(x) exp(-x^2/2)/(sqrt(2*pi)) * (-x^3 + 3*x),      #g^(4)
+    function(x) exp(-x^2/2)/(sqrt(2*pi)) * ( x^4 - 6*x^2 + 3) #g^(5)
+  ),
+  "logit"=list(
+    # Sigmoid derivatives list, obtained with http://www.derivative-calculator.net/
+    # @seealso http://www.ece.uc.edu/~aminai/papers/minai_sigmoids_NN93.pdf
+    function(x) {e=exp(x); .zin(e                                    /(e+1)^2)}, #g'
+    function(x) {e=exp(x); .zin(e*(-e   + 1)                         /(e+1)^3)}, #g''
+    function(x) {e=exp(x); .zin(e*( e^2 - 4*e    + 1)                /(e+1)^4)}, #g^(3)
+    function(x) {e=exp(x); .zin(e*(-e^3 + 11*e^2 - 11*e   + 1)       /(e+1)^5)}, #g^(4)
+    function(x) {e=exp(x); .zin(e*( e^4 - 26*e^3 + 66*e^2 - 26*e + 1)/(e+1)^6)}  #g^(5)
+  )
 )
 
 # Utility for integration: "[return] zero if [argument is] NaN" (Inf / Inf divs)
@@ -329,6 +351,6 @@ setRefClass(
 #
 .zin <- function(x)
 {
-       x[is.nan(x)] <- 0.
-       x
+  x[is.nan(x)] <- 0.
+  x
 }