save state: wrong idea for indices repartition
[epclust.git] / epclust / tests / testthat / test.clustering.R
index 527f6bd..7116e73 100644 (file)
 context("clustering")
 
-#TODO: load some dataset ASCII CSV
-#data_bin_file <<- "/tmp/epclust_test.bin"
-#unlink(data_bin_file)
+#shorthand: map 1->1, 2->2, 3->3, 4->1, ..., 149->2, 150->3, ... (is base==3)
+I = function(i, base)
+       (i-1) %% base + 1
 
-test_that("computeClusters1 behave as expected",
+test_that("computeClusters1&2 behave as expected",
 {
+       require("MASS", quietly=TRUE)
+       if (!require("clue", quietly=TRUE))
+               skip("'clue' package not available")
 
+       # 3 gaussian clusters, 300 items; and then 7 gaussian clusters, 490 items
+       n = 300
+       d = 5
+       K = 3
+       for (ndK in list( c(300,5,3), c(490,10,7) ))
+       {
+               n = ndK[1] ; d = ndK[2] ; K = ndK[3]
+               cs = n/K #cluster size
+               Id = diag(d)
+               coefs = sapply(1:K, function(i) MASS::mvrnorm(cs, c(rep(0,(i-1)),5,rep(0,d-i)), Id))
+               indices_medoids1 = computeClusters1(coefs, K, verbose=TRUE)
+               indices_medoids2 = computeClusters2(dist(coefs), K, verbose=TRUE)
+               # Get coefs assignments (to medoids)
+               assignment1 = sapply(seq_len(n), function(i)
+                       which.min( colSums( sweep(coefs[,indices_medoids1],1,coefs[,i],'-')^2 ) ) )
+               assignment2 = sapply(seq_len(n), function(i)
+                       which.min( colSums( sweep(coefs[,indices_medoids2],1,coefs[,i],'-')^2 ) ) )
+               for (i in 1:K)
+               {
+                       expect_equal(sum(assignment1==i), cs, tolerance=5)
+                       expect_equal(sum(assignment2==i), cs, tolerance=5)
+               }
+
+               costs_matrix1 = matrix(nrow=K,ncol=K)
+               costs_matrix2 = matrix(nrow=K,ncol=K)
+               for (i in 1:K)
+               {
+                       for (j in 1:K)
+                       {
+                               # assign i (in result) to j (order 1,2,3)
+                               costs_matrix1[i,j] = abs( mean(assignment1[((i-1)*cs+1):(i*cs)]) - j )
+                               costs_matrix2[i,j] = abs( mean(assignment2[((i-1)*cs+1):(i*cs)]) - j )
+                       }
+               }
+               permutation1 = as.integer( clue::solve_LSAP(costs_matrix1) )
+               permutation2 = as.integer( clue::solve_LSAP(costs_matrix2) )
+               for (i in 1:K)
+               {
+                       expect_equal(
+                               mean(assignment1[((i-1)*cs+1):(i*cs)]), permutation1[i], tolerance=0.05)
+                       expect_equal(
+                               mean(assignment2[((i-1)*cs+1):(i*cs)]), permutation2[i], tolerance=0.05)
+               }
+       }
 })
 
 test_that("computeSynchrones behave as expected",
 {
+       n = 300
+       x = seq(0,9.5,0.1)
+       L = length(x) #96 1/4h
+       K = 3
+       s1 = cos(x)
+       s2 = sin(x)
+       s3 = c( s1[1:(L%/%2)] , s2[(L%/%2+1):L] )
+       #sum((s1-s2)^2) == 96
+       #sum((s1-s3)^2) == 58
+       #sum((s2-s3)^2) == 38
+       s = list(s1, s2, s3)
+       series = matrix(nrow=L, ncol=n)
+       for (i in seq_len(n))
+               series[,i] = s[[I(i,K)]] + rnorm(L,sd=0.01)
+       getRefSeries = function(indices) {
+               indices = indices[indices <= n]
+               if (length(indices)>0) series[,indices] else NULL
+       }
+       synchrones = computeSynchrones(bigmemory::as.big.matrix(cbind(s1,s2,s3)), getRefSeries,
+               n, 100, verbose=TRUE, parll=FALSE)
 
+       expect_equal(dim(synchrones), c(L,K))
+       for (i in 1:K)
+               expect_equal(synchrones[,i], s[[i]], tolerance=0.01)
 })
 
-test_that("computeClusters2 behave as expected",
+# NOTE: medoids can be a big.matrix
+computeDistortion = function(series, medoids)
+{
+       n = nrow(series) ; L = ncol(series)
+       distortion = 0.
+       if (bigmemory::is.big.matrix(medoids))
+               medoids = medoids[,]
+       for (i in seq_len(n))
+               distortion = distortion + min( colSums( sweep(medoids,1,series[,i],'-')^2 ) / L )
+       distortion / n
+}
+
+test_that("clusteringTask1 behave as expected",
 {
+       n = 900
+       x = seq(0,9.5,0.1)
+       L = length(x) #96 1/4h
+       K1 = 60
+       s = lapply( seq_len(K1), function(i) x^(1+i/30)*cos(x+i) )
+       series = matrix(nrow=n, ncol=L)
+       for (i in seq_len(n))
+               series[,i] = s[[I(i,K1)]] + rnorm(L,sd=0.01)
+       getSeries = function(indices) {
+               indices = indices[indices <= n]
+               if (length(indices)>0) series[,indices] else NULL
+       }
+       wf = "haar"
+       ctype = "absolute"
+       getContribs = function(indices) curvesToContribs(series[,indices],wf,ctype)
+       indices1 = clusteringTask1(1:n, getContribs, K1, 75, verbose=TRUE, parll=FALSE)
+       medoids_K1 = getSeries(indices1)
 
+       expect_equal(dim(medoids_K1), c(L,K1))
+       # Not easy to evaluate result: at least we expect it to be better than random selection of
+       # medoids within initial series
+       distorGood = computeDistortion(series, medoids_K1)
+       for (i in 1:3)
+               expect_lte( distorGood, computeDistortion(series,series[,sample(1:n, K1)]) )
 })
 
-test_that("clusteringTask + computeClusters2 behave as expected",
+test_that("clusteringTask2 behave as expected",
 {
+       n = 900
+       x = seq(0,9.5,0.1)
+       L = length(x) #96 1/4h
+       K1 = 60
+       K2 = 3
+       #for (i in 1:60) {plot(x^(1+i/30)*cos(x+i),type="l",col=i,ylim=c(-50,50)); par(new=TRUE)}
+       s = lapply( seq_len(K1), function(i) x^(1+i/30)*cos(x+i) )
+       series = matrix(nrow=n, ncol=L)
+       for (i in seq_len(n))
+               series[i,] = s[[I(i,K1)]] + rnorm(L,sd=0.01)
+       getRefSeries = function(indices) {
+               indices = indices[indices <= n]
+               if (length(indices)>0) series[,indices] else NULL
+       }
+       # Artificially simulate 60 medoids - perfect situation, all equal to one of the refs
+       medoids_K1 = bigmemory::as.big.matrix( sapply( 1:K1, function(i) s[[I(i,K1)]] ) )
+       medoids_K2 = clusteringTask2(medoids_K1, K2, getRefSeries, n, 75, verbose=TRUE, parll=FALSE)
 
+       expect_equal(dim(medoids_K2), c(L,K2))
+       # Not easy to evaluate result: at least we expect it to be better than random selection of
+       # medoids within 1...K1 (among references)
+       distorGood = computeDistortion(series, medoids_K2)
+       for (i in 1:3)
+               expect_lte( distorGood, computeDistortion(series,medoids_K1[,sample(1:K1, K2)]) )
 })
+
+#NOTE: rather redundant test
+#test_that("clusteringTask1 + clusteringTask2 behave as expected",
+#{
+#      n = 900
+#      x = seq(0,9.5,0.1)
+#      L = length(x) #96 1/4h
+#      K1 = 60
+#      K2 = 3
+#      s = lapply( seq_len(K1), function(i) x^(1+i/30)*cos(x+i) )
+#      series = matrix(nrow=n, ncol=L)
+#      for (i in seq_len(n))
+#              series[i,] = s[[I(i,K1)]] + rnorm(L,sd=0.01)
+#      getSeries = function(indices) {
+#              indices = indices[indices <= n]
+#              if (length(indices)>0) series[indices,] else NULL
+#      }
+#      wf = "haar"
+#      ctype = "absolute"
+#      getContribs = function(indices) curvesToContribs(series[indices,],wf,ctype)
+#      require("bigmemory", quietly=TRUE)
+#      indices1 = clusteringTask1(1:n, getContribs, K1, 75, verbose=TRUE, parll=FALSE)
+#      medoids_K1 = bigmemory::as.big.matrix( getSeries(indices1) )
+#      medoids_K2 = clusteringTask2(medoids_K1, K2, getSeries, n, 120, verbose=TRUE, parll=FALSE)
+#
+#      expect_equal(dim(medoids_K1), c(K1,L))
+#      expect_equal(dim(medoids_K2), c(K2,L))
+#      # Not easy to evaluate result: at least we expect it to be better than random selection of
+#      # medoids within 1...K1 (among references)
+#      distorGood = computeDistortion(series, medoids_K2)
+#      for (i in 1:3)
+#              expect_lte( distorGood, computeDistortion(series,medoids_K1[sample(1:K1, K2),]) )
+#})