code seems OK; still wavelets test to write
[epclust.git] / epclust / R / clustering.R
index fce1b1c..8be8715 100644 (file)
-# Cluster one full task (nb_curves / ntasks series); only step 1
-clusteringTask = function(indices, getCoefs, K1, nb_series_per_chunk, ncores)
+#' @name clustering
+#' @rdname clustering
+#' @aliases clusteringTask1 clusteringTask2 computeClusters1 computeClusters2
+#'
+#' @title Two-stage clustering, withing one task (see \code{claws()})
+#'
+#' @description \code{clusteringTask1()} runs one full stage-1 task, which consists in
+#'   iterated stage 1 clustering (on nb_curves / ntasks energy contributions, computed
+#'   through discrete wavelets coefficients).
+#'   \code{clusteringTask2()} runs a full stage-2 task, which consists in synchrones
+#'   and then WER distances computations, before applying the clustering algorithm.
+#'   \code{computeClusters1()} and \code{computeClusters2()} correspond to the atomic
+#'   clustering procedures respectively for stage 1 and 2. The former applies the
+#'   first clustering algorithm on a contributions matrix, while the latter clusters
+#'   a set of series inside one task (~nb_items_clust1)
+#'
+#' @param indices Range of series indices to cluster in parallel (initial data)
+#' @param getContribs Function to retrieve contributions from initial series indices:
+#'   \code{getContribs(indices)} outpus a contributions matrix
+#' @inheritParams computeSynchrones
+#' @inheritParams claws
+#'
+#' @return For \code{clusteringTask1()}, the indices of the computed (K1) medoids.
+#'   Indices are irrelevant for stage 2 clustering, thus \code{clusteringTask2()}
+#'   outputs a big.matrix of medoids (of size LxK2, K2 = final number of clusters)
+NULL
+
+#' @rdname clustering
+#' @export
+clusteringTask1 = function(indices, getContribs, K1, algoClust1, nb_items_clust1,
+       ncores_clust=1, verbose=FALSE, parll=TRUE)
 {
-       cl = parallel::makeCluster(ncores)
-       repeat
+       if (parll)
+       {
+               cl = parallel::makeCluster(ncores_clust, outfile = "")
+               parallel::clusterExport(cl, c("getContribs","K1","verbose"), envir=environment())
+       }
+       # Iterate clustering algorithm 1 until K1 medoids are found
+       while (length(indices) > K1)
        {
-               nb_workers = max( 1, round( length(indices) / nb_series_per_chunk ) )
-               indices_workers = lapply(seq_len(nb_workers), function(i) {
-                       upper_bound = ifelse( i<nb_workers,
-                               min(nb_series_per_chunk*i,length(indices)), length(indices) )
-                       indices[(nb_series_per_chunk*(i-1)+1):upper_bound]
-               })
-               indices = unlist( parallel::parLapply(cl, indices_workers, function(inds)
-                       computeClusters1(getCoefs(inds), K1)) )
-               if (length(indices) == K1)
-                       break
+               # Balance tasks by splitting the indices set - as evenly as possible
+               indices_workers = .spreadIndices(indices, nb_items_clust1)
+               if (verbose)
+                       cat(paste("*** [iterated] Clustering task 1 on ",length(indices)," series\n", sep=""))
+               indices <-
+                       if (parll)
+                       {
+                               unlist( parallel::parLapply(cl, indices_workers, function(inds) {
+                                       require("epclust", quietly=TRUE)
+                                       inds[ algoClust1(getContribs(inds), K1) ]
+                               }) )
+                       }
+                       else
+                       {
+                               unlist( lapply(indices_workers, function(inds)
+                                       inds[ algoClust1(getContribs(inds), K1) ]
+                               ) )
+                       }
        }
-       parallel::stopCluster(cl)
+       if (parll)
+               parallel::stopCluster(cl)
+
        indices #medoids
 }
 
-# Apply the clustering algorithm (PAM) on a coeffs or distances matrix
-computeClusters1 = function(coefs, K1)
-       indices[ cluster::pam(coefs, K1, diss=FALSE)$id.med ]
+#' @rdname clustering
+#' @export
+clusteringTask2 = function(medoids, K2, algoClust2, getRefSeries, nb_ref_curves,
+       nb_series_per_chunk, nvoice, nbytes,endian,ncores_clust=1,verbose=FALSE,parll=TRUE)
+{
+       if (verbose)
+               cat(paste("*** Clustering task 2 on ",ncol(medoids)," synchrones\n", sep=""))
+
+       if (ncol(medoids) <= K2)
+               return (medoids)
+
+       # A) Obtain synchrones, that is to say the cumulated power consumptions
+       #    for each of the K1 initial groups
+       synchrones = computeSynchrones(medoids, getRefSeries, nb_ref_curves,
+               nb_series_per_chunk, ncores_clust, verbose, parll)
+
+       # B) Compute the WER distances (Wavelets Extended coefficient of deteRmination)
+       distances = computeWerDists(
+               synchrones, nvoice, nbytes, endian, ncores_clust, verbose, parll)
 
-# Cluster a chunk of series inside one task (~max nb_series_per_chunk)
-computeClusters2 = function(medoids, K2, getRefSeries, nb_series_per_chunk)
+       # C) Apply clustering algorithm 2 on the WER distances matrix
+       if (verbose)
+               cat(paste("*** algoClust2() on ",nrow(distances)," items\n", sep=""))
+       medoids[ ,algoClust2(distances,K2) ]
+}
+
+#' computeSynchrones
+#'
+#' Compute the synchrones curves (sum of clusters elements) from a matrix of medoids,
+#' using euclidian distance.
+#'
+#' @param medoids big.matrix of medoids (curves of same length as initial series)
+#' @param getRefSeries Function to retrieve initial series (e.g. in stage 2 after series
+#'   have been replaced by stage-1 medoids)
+#' @param nb_ref_curves How many reference series? (This number is known at this stage)
+#' @inheritParams claws
+#'
+#' @return A big.matrix of size L x K1 where L = length of a serie
+#'
+#' @export
+computeSynchrones = function(medoids, getRefSeries, nb_ref_curves,
+       nb_series_per_chunk, ncores_clust=1,verbose=FALSE,parll=TRUE)
 {
-       synchrones = computeSynchrones(medoids, getRefSeries, nb_series_per_chunk)
-       cluster::pam(computeWerDists(synchrones), K2, diss=TRUE)$medoids
+       # Synchrones computation is embarassingly parallel: compute it by chunks of series
+       computeSynchronesChunk = function(indices)
+       {
+               if (parll)
+               {
+                       require("bigmemory", quietly=TRUE)
+                       requireNamespace("synchronicity", quietly=TRUE)
+                       require("epclust", quietly=TRUE)
+                       # The big.matrix objects need to be attached to be usable on the workers
+                       synchrones <- bigmemory::attach.big.matrix(synchrones_desc)
+                       medoids <- bigmemory::attach.big.matrix(medoids_desc)
+                       m <- synchronicity::attach.mutex(m_desc)
+               }
+
+               # Obtain a chunk of reference series
+               ref_series = getRefSeries(indices)
+               nb_series = ncol(ref_series)
+
+               # Get medoids indices for this chunk of series
+               mi = computeMedoidsIndices(medoids@address, ref_series)
+
+               # Update synchrones using mi above
+               for (i in seq_len(nb_series))
+               {
+                       if (parll)
+                               synchronicity::lock(m) #locking required because several writes at the same time
+                       synchrones[, mi[i] ] = synchrones[, mi[i] ] + ref_series[,i]
+                       if (parll)
+                               synchronicity::unlock(m)
+               }
+               NULL
+       }
+
+       K = ncol(medoids) ; L = nrow(medoids)
+       # Use bigmemory (shared==TRUE by default) + synchronicity to fill synchrones in //
+       synchrones = bigmemory::big.matrix(nrow=L, ncol=K, type="double", init=0.)
+       # NOTE: synchronicity is only for Linux & MacOS; on Windows: run sequentially
+       parll = (parll && requireNamespace("synchronicity",quietly=TRUE)
+               && Sys.info()['sysname'] != "Windows")
+       if (parll)
+       {
+               m <- synchronicity::boost.mutex() #for lock/unlock, see computeSynchronesChunk
+               # mutex and big.matrix objects cannot be passed directly:
+               # they will be accessed from their description
+               m_desc <- synchronicity::describe(m)
+               synchrones_desc = bigmemory::describe(synchrones)
+               medoids_desc = bigmemory::describe(medoids)
+               cl = parallel::makeCluster(ncores_clust)
+               parallel::clusterExport(cl, envir=environment(),
+                       varlist=c("synchrones_desc","m_desc","medoids_desc","getRefSeries"))
+       }
+
+       if (verbose)
+               cat(paste("--- Compute ",K," synchrones with ",nb_ref_curves," series\n", sep=""))
+
+       # Balance tasks by splitting the indices set - maybe not so evenly, but
+       # max==TRUE in next call ensures that no set has more than nb_series_per_chunk items.
+       indices_workers = .spreadIndices(seq_len(nb_ref_curves), nb_series_per_chunk, max=TRUE)
+       ignored <-
+               if (parll)
+                       parallel::parLapply(cl, indices_workers, computeSynchronesChunk)
+               else
+                       lapply(indices_workers, computeSynchronesChunk)
+
+       if (parll)
+               parallel::stopCluster(cl)
+
+       return (synchrones)
 }
 
-# Compute the synchrones curves (sum of clusters elements) from a clustering result
-computeSynchrones = function(medoids, getRefSeries, nb_series_per_chunk)
+#' computeWerDists
+#'
+#' Compute the WER distances between the synchrones curves (in columns), which are
+#' returned (e.g.) by \code{computeSynchrones()}
+#'
+#' @param synchrones A big.matrix of synchrones, in columns. The series have same
+#'   length as the series in the initial dataset
+#' @inheritParams claws
+#'
+#' @return A distances matrix of size K1 x K1
+#'
+#' @export
+computeWerDists = function(synchrones, nvoice, nbytes,endian,ncores_clust=1,
+       verbose=FALSE,parll=TRUE)
 {
-       #les getSeries(indices) sont les medoides --> init vect nul pour chacun, puis incr avec les
-       #courbes (getSeriesForSynchrones) les plus proches... --> au sens de la norme L2 ?
-       K = nrow(medoids)
-       synchrones = matrix(0, nrow=K, ncol=ncol(medoids))
-       counts = rep(0,K)
-       index = 1
-       repeat
+       n <- ncol(synchrones)
+       L <- nrow(synchrones)
+       noctave = ceiling(log2(L)) #min power of 2 to cover serie range
+
+       # Initialize result as a square big.matrix of size 'number of synchrones'
+       Xwer_dist <- bigmemory::big.matrix(nrow=n, ncol=n, type="double")
+
+       # Generate n(n-1)/2 pairs for WER distances computations
+       pairs = list()
+       V = seq_len(n)
+       for (i in 1:n)
+       {
+               V = V[-1]
+               pairs = c(pairs, lapply(V, function(v) c(i,v)))
+       }
+
+       cwt_file = ".cwt.bin"
+       # Compute the synchrones[,index] CWT, and store it in the binary file above
+       computeSaveCWT = function(index)
+       {
+               if (parll && !exists(synchrones)) #avoid going here after first call on a worker
+               {
+                       require("bigmemory", quietly=TRUE)
+                       require("Rwave", quietly=TRUE)
+                       require("epclust", quietly=TRUE)
+                       synchrones <- bigmemory::attach.big.matrix(synchrones_desc)
+               }
+               ts <- scale(ts(synchrones[,index]), center=TRUE, scale=FALSE)
+               ts_cwt = Rwave::cwt(ts, noctave, nvoice, w0=2*pi, twoD=TRUE, plot=FALSE)
+
+               # Serialization
+               binarize(as.matrix(c(as.double(Re(ts_cwt)),as.double(Im(ts_cwt)))), cwt_file, 1,
+                       ",", nbytes, endian)
+       }
+
+       if (parll)
+       {
+               cl = parallel::makeCluster(ncores_clust)
+               synchrones_desc <- bigmemory::describe(synchrones)
+               Xwer_dist_desc <- bigmemory::describe(Xwer_dist)
+               parallel::clusterExport(cl, varlist=c("parll","synchrones_desc","Xwer_dist_desc",
+                       "noctave","nvoice","verbose","getCWT"), envir=environment())
+       }
+
+       if (verbose)
+               cat(paste("--- Precompute and serialize synchrones CWT\n", sep=""))
+
+       ignored <-
+               if (parll)
+                       parallel::parLapply(cl, 1:n, computeSaveCWT)
+               else
+                       lapply(1:n, computeSaveCWT)
+
+       # Function to retrieve a synchrone CWT from (binary) file
+       getSynchroneCWT = function(index, L)
+       {
+               flat_cwt <- getDataInFile(index, cwt_file, nbytes, endian)
+               cwt_length = length(flat_cwt) / 2
+               re_part = as.matrix(flat_cwt[1:cwt_length], nrow=L)
+               im_part = as.matrix(flat_cwt[(cwt_length+1):(2*cwt_length)], nrow=L)
+               re_part + 1i * im_part
+       }
+
+       # Compute distance between columns i and j in synchrones
+       computeDistanceIJ = function(pair)
        {
-               range = (index-1) + seq_len(nb_series_per_chunk)
-               ref_series = getRefSeries(range)
-               if (is.null(ref_series))
-                       break
-               #get medoids indices for this chunk of series
-               for (i in seq_len(nrow(ref_series)))
+               if (parll)
                {
-                       j = which.min( rowSums( sweep(medoids, 2, series[i,], '-')^2 ) )
-                       synchrones[j,] = synchrones[j,] + series[i,]
-                       counts[j] = counts[j] + 1
+                       # parallel workers start with an empty environment
+                       require("bigmemory", quietly=TRUE)
+                       require("epclust", quietly=TRUE)
+                       synchrones <- bigmemory::attach.big.matrix(synchrones_desc)
+                       Xwer_dist <- bigmemory::attach.big.matrix(Xwer_dist_desc)
                }
-               index = index + nb_series_per_chunk
+
+               i = pair[1] ; j = pair[2]
+               if (verbose && j==i+1 && !parll)
+                       cat(paste("   Distances (",i,",",j,"), (",i,",",j+1,") ...\n", sep=""))
+
+               # Compute CWT of columns i and j in synchrones
+               L = nrow(synchrones)
+               cwt_i <- getSynchroneCWT(i, L)
+               cwt_j <- getSynchroneCWT(j, L)
+
+               # Compute the ratio of integrals formula 5.6 for WER^2
+               # in https://arxiv.org/abs/1101.4744v2 ยง5.3
+               num <- filterMA(Mod(cwt_i * Conj(cwt_j)))
+               WX  <- filterMA(Mod(cwt_i * Conj(cwt_i)))
+               WY <- filterMA(Mod(cwt_j * Conj(cwt_j)))
+               wer2 <- sum(colSums(num)^2) / sum(colSums(WX) * colSums(WY))
+
+               Xwer_dist[i,j] <- sqrt(L * ncol(cwt_i) * (1 - wer2))
+               Xwer_dist[j,i] <- Xwer_dist[i,j]
+               Xwer_dist[i,i] <- 0.
        }
-       #NOTE: odds for some clusters to be empty? (when series already come from stage 2)
-       sweep(synchrones, 1, counts, '/')
+
+       if (verbose)
+               cat(paste("--- Compute WER distances\n", sep=""))
+
+       ignored <-
+               if (parll)
+                       parallel::parLapply(cl, pairs, computeDistanceIJ)
+               else
+                       lapply(pairs, computeDistanceIJ)
+
+       if (parll)
+               parallel::stopCluster(cl)
+
+       unlink(cwt_file)
+
+       Xwer_dist[n,n] = 0.
+       Xwer_dist[,] #~small matrix K1 x K1
 }
 
-# Compute the WER distance between the synchrones curves (in rows)
-computeWerDist = function(curves)
+# Helper function to divide indices into balanced sets
+# If max == TRUE, sets sizes cannot exceed nb_per_set
+.spreadIndices = function(indices, nb_per_set, max=FALSE)
 {
-       if (!require("Rwave", quietly=TRUE))
-               stop("Unable to load Rwave library")
-       n <- nrow(curves)
-       delta <- ncol(curves)
-       #TODO: automatic tune of all these parameters ? (for other users)
-       nvoice   <- 4
-       # noctave = 2^13 = 8192 half hours ~ 180 days ; ~log2(ncol(curves))
-       noctave = 13
-       # 4 here represent 2^5 = 32 half-hours ~ 1 day
-       #NOTE: default scalevector == 2^(0:(noctave * nvoice) / nvoice) * s0 (?)
-       scalevector  <- 2^(4:(noctave * nvoice) / nvoice) * 2
-       #condition: ( log2(s0*w0/(2*pi)) - 1 ) * nvoice + 1.5 >= 1
-       s0=2
-       w0=2*pi
-       scaled=FALSE
-       s0log = as.integer( (log2( s0*w0/(2*pi) ) - 1) * nvoice + 1.5 )
-       totnoct = noctave + as.integer(s0log/nvoice) + 1
-
-       # (normalized) observations node with CWT
-       Xcwt4 <- lapply(seq_len(n), function(i) {
-               ts <- scale(ts(curves[i,]), center=TRUE, scale=scaled)
-               totts.cwt = Rwave::cwt(ts,totnoct,nvoice,w0,plot=0)
-               ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)]
-               #Normalization
-               sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0)
-               sqres <- sweep(ts.cwt,MARGIN=2,sqs,'*')
-               sqres / max(Mod(sqres))
-       })
-
-       Xwer_dist <- matrix(0., n, n)
-       fcoefs = rep(1/3, 3) #moving average on 3 values (TODO: very slow! correct?!)
-       for (i in 1:(n-1))
+       L = length(indices)
+       nb_workers = floor( L / nb_per_set )
+       rem = L %% nb_per_set
+       if (nb_workers == 0 || (nb_workers==1 && rem==0))
+       {
+               # L <= nb_per_set, simple case
+               indices_workers = list(indices)
+       }
+       else
        {
-               for (j in (i+1):n)
+               indices_workers = lapply( seq_len(nb_workers), function(i)
+                       indices[(nb_per_set*(i-1)+1):(nb_per_set*i)] )
+
+               if (max)
+               {
+                       # Sets are not so well balanced, but size is supposed to be critical
+                       return ( c( indices_workers, if (rem>0) list((L-rem+1):L) else NULL ) )
+               }
+
+               # Spread the remaining load among the workers
+               rem = L %% nb_per_set
+               while (rem > 0)
                {
-                       #TODO: later, compute CWT here (because not enough storage space for 200k series)
-                       #      'circular=TRUE' is wrong, should just take values on the sides; to rewrite in C
-                       num <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE)
-                       WX <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[i]])), fcoefs, circular=TRUE)
-                       WY <- filter(Mod(Xcwt4[[j]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE)
-                       wer2    <- sum(colSums(num)^2) / sum( sum(colSums(WX) * colSums(WY)) )
-                       Xwer_dist[i,j] <- sqrt(delta * ncol(Xcwt4[[1]]) * (1 - wer2))
-                       Xwer_dist[j,i] <- Xwer_dist[i,j]
+                       index = rem%%nb_workers + 1
+                       indices_workers[[index]] = c(indices_workers[[index]], indices[L-rem+1])
+                       rem = rem - 1
                }
        }
-       diag(Xwer_dist) <- numeric(n)
-       Xwer_dist
+       indices_workers
 }