'update'
[epclust.git] / code / stage2 / src / 05_cluster2stepWER.r
CommitLineData
ad642dc6
BA
1## File : 05_cluster2stepWER.r
2## Description :
3
4rm(list = ls())
5
6setwd("~/ownCloud/projects/2014_EDF-Orsay-Lyon2/codes/")
7
8library(Rwave) # CWT
9library(cluster) # pam
10#library(flexclust) # kcca
11source("aux.r") # auxiliary clustering functions
12source("sowas-superseded.r") # auxiliary CWT functions
13
14## 1. Read auxiliar data files ####
15
16identifiants <- read.table("identifs.txt")[ ,1]
17dates0 <- read.table("datesall.txt")[, 1]
18dates <- as.character(dates0[grep("2009", dates0)])
19rm(dates0)
20
21n <- length(identifiants)
22p <- delta <- length(dates)
23
24synchros09 <- t(as.matrix(read.table("~/tmp/2009_synchros200RC.txt")))
25#synchros09 <- t(as.matrix(read.table("~/tmp/2009_synchros200-random.txt")))
26
27nas <- which(is.na(synchros09)[, 1]) # some 1/1/2009 are missing
28synchros09[nas, 1] <- rowMeans(synchros09[nas, 2:4])
29
30imput09 <- synchros09[, 4180:4181] %*% matrix(c(2/3, 1/3, 1/3, 2/3), 2)
31synchros09 <- cbind(synchros09[, 1:4180], imput09, synchros09[, 4181:17518])
32
33conso <- synchros09[-201, ]; # series must be on rows
34n <- nrow(conso)
35delta <- ncol(conso)
36
37rm(synchros09, nas)
38
39## 2. Compute WER distance matrix ####
40
41## _.a CWT -- Filtering the lowest freqs (>6m) ####
42# nvoice <- 4
43# # noctave4 = 2^13 = 8192 half hours ~ 180 days
44# noctave4 <- adjust.noctave(N = delta, dt = 1, s0 = 2,
45# tw = 0, noctave = 13)
46# # 4 here represent 2^5 = 32 half-hours ~ 1 day
47# scalevector4 <- 2^(4:(noctave4 * nvoice) / nvoice) * 2
48# lscvect4 <- length(scalevector4)
49# lscvect <- lscvect4 # i should clean my code: werFam demands a lscvect
50# Xcwt4 <- toCWT(conso, noctave = noctave4, dt = 1,
51# scalevector = scalevector4,
52# lt = delta, smooth = FALSE,
53# nvoice = nvoice) # observations node with CWT
54#
55# #Xcwt2 <- matrix(0.0, nrow= n, ncol= 2 + delta * lscvect)
56# #Xcwt2 <- matrix(NA_complex_, nrow= n, ncol= 2 + length((c(Xcwt4[,,1]))))
57#
58# for(i in 1:n)
59# Xcwt2[i,] <- c(delta, lscvect, Xcwt4[,,i] / max(Mod(Xcwt4[,,i])) )
60#
61# #rm(conso, Xcwt4); gc()
62#
63# ## _.b WER^2 distances ########
64# Xwer_dist <- matrix(0.0, n, n)
65# for(i in 1:(n - 1)){
66# mat1 <- vect2mat(Xcwt2[i,])
67# for(j in (i + 1):n){
68# mat2 <- vect2mat(Xcwt2[j,])
69# num <- Mod(mat1 * Conj(mat2))
70# WX <- Mod(mat1 * Conj(mat1))
71# WY <- Mod(mat2 * Conj(mat2))
72# smsmnum <- smCWT(num, scalevector = scalevector4)
73# smsmWX <- smCWT(WX, scalevector = scalevector4)
74# smsmWY <- smCWT(WY, scalevector = scalevector4)
75# wer2 <- sum(colSums(smsmnum)^2) /
76# sum( sum(colSums(smsmWX) * colSums(smsmWY)) )
77# Xwer_dist[i, j] <- sqrt(delta * lscvect * (1 - wer2))
78# Xwer_dist[j, i] <- Xwer_dist[i, j]
79# }
80# }
81# diag(Xwer_dist) <- numeric(n)
82#
83# save(Xwer_dist, file = "../res/2009_synchros200WER.Rdata")
84# save(Xwer_dist, file = "../res/2009_synchros200-randomWER.Rdata")
85
86load("../res/2009_synchros200WER.Rdata")
87#load("../res/2009_synchros200-randomWER.Rdata")
88
89## 3. Cluster using WER distance matrix ####
90
91#hc <- hclust(as.dist(Xwer_dist), method = "ward.D")
92#plot(hc)
93#
94# #clust <- cutree(hc, 2)
95#
96for(K in 2:30){
97 #K <- 3
98 #pamfit <- pam(tdata[-201, ci$selectv], k = K)
99 pamfit <- pam(as.dist(Xwer_dist), k = K, diss = TRUE)
100
101 #table(pamfit$clustering)
102
103 SC <- matrix(0, ncol = p, nrow = K)
104
105 clustfactor <- pamfit$clustering
106# for(k in 1:K){
107# clustk <- which(clustfactor == k)
108# if(length(clustk) > 0) {
109# if(length(clustk) > 1) {
110# SCk <- colSums(synchros09[which(clustfactor == k), ])
111# } else {
112# SCk <- synchros09[which(clustfactor == k), ]
113# }
114# SC[k, ] <- SC[k, ] + SCk
115# rm(SCk)
116# }
117#}
118
119#write.table(clustfactor, file = paste0("~/tmp/clustfactorRC", K, ".txt"))
120#write.table(clustfactor, file = "~/tmp/clustfactor3.txt")
121#write.table(clustfactor, file = paste0("~/tmp/clustfactorWER", K, ".txt"))
122write.table(clustfactor, file = paste0("~/tmp/clustfactor-randomWER", K, ".txt"))
123}
124#
125# # Plots
126# layout(1)
127# matplot(t(SC)[48*10 + 1:(48*30), ], type = 'l', ylab = '',col = 1:3, lty = 1)
128# matplot(t(SC)[48*100 + 1:(48*30), ], type = 'l', ylab = '', col = 1:3, lty = 1)
129#
130#
131#