1 // (Orthodox) Chess rules are defined in ChessRules class.
2 // Variants generally inherit from it, and modify some parts.
4 import { ArrayFun
} from "@/utils/array";
5 import { randInt
, shuffle
} from "@/utils/alea";
7 // class "PiPo": Piece + Position
8 export const PiPo
= class PiPo
{
9 // o: {piece[p], color[c], posX[x], posY[y]}
18 export const Move
= class Move
{
19 // o: {appear, vanish, [start,] [end,]}
20 // appear,vanish = arrays of PiPo
21 // start,end = coordinates to apply to trigger move visually (think castle)
23 this.appear
= o
.appear
;
24 this.vanish
= o
.vanish
;
25 this.start
= o
.start
? o
.start : { x: o
.vanish
[0].x
, y: o
.vanish
[0].y
};
26 this.end
= o
.end
? o
.end : { x: o
.appear
[0].x
, y: o
.appear
[0].y
};
30 // NOTE: x coords = top to bottom; y = left to right (from white player perspective)
31 export const ChessRules
= class ChessRules
{
35 // Some variants don't have flags:
36 static get HasFlags() {
40 // Some variants don't have en-passant
41 static get HasEnpassant() {
45 // Some variants cannot have analyse mode
46 static get CanAnalyze() {
49 // Patch: issues with javascript OOP, objects can't access static fields.
54 // Some variants show incomplete information,
55 // and thus show only a partial moves list or no list at all.
56 static get ShowMoves() {
63 // Some variants always show the same orientation
64 static get CanFlip() {
71 // Turn "wb" into "B" (for FEN)
73 return b
[0] == "w" ? b
[1].toUpperCase() : b
[1];
76 // Turn "p" into "bp" (for board)
78 return f
.charCodeAt() <= 90 ? "w" + f
.toLowerCase() : "b" + f
;
81 // Check if FEN describe a board situation correctly
82 static IsGoodFen(fen
) {
83 const fenParsed
= V
.ParseFen(fen
);
85 if (!V
.IsGoodPosition(fenParsed
.position
)) return false;
87 if (!fenParsed
.turn
|| !V
.IsGoodTurn(fenParsed
.turn
)) return false;
88 // 3) Check moves count
89 if (!fenParsed
.movesCount
|| !(parseInt(fenParsed
.movesCount
) >= 0))
92 if (V
.HasFlags
&& (!fenParsed
.flags
|| !V
.IsGoodFlags(fenParsed
.flags
)))
97 (!fenParsed
.enpassant
|| !V
.IsGoodEnpassant(fenParsed
.enpassant
))
104 // Is position part of the FEN a priori correct?
105 static IsGoodPosition(position
) {
106 if (position
.length
== 0) return false;
107 const rows
= position
.split("/");
108 if (rows
.length
!= V
.size
.x
) return false;
110 for (let row
of rows
) {
112 for (let i
= 0; i
< row
.length
; i
++) {
113 if (['K','k'].includes(row
[i
]))
114 kings
[row
[i
]] = true;
115 if (V
.PIECES
.includes(row
[i
].toLowerCase())) sumElts
++;
117 const num
= parseInt(row
[i
]);
118 if (isNaN(num
)) return false;
122 if (sumElts
!= V
.size
.y
) return false;
124 // Both kings should be on board:
125 if (Object
.keys(kings
).length
!= 2)
131 static IsGoodTurn(turn
) {
132 return ["w", "b"].includes(turn
);
136 static IsGoodFlags(flags
) {
137 return !!flags
.match(/^[01]{4,4}$/);
140 static IsGoodEnpassant(enpassant
) {
141 if (enpassant
!= "-") {
142 const ep
= V
.SquareToCoords(enpassant
);
143 if (isNaN(ep
.x
) || !V
.OnBoard(ep
)) return false;
148 // 3 --> d (column number to letter)
149 static CoordToColumn(colnum
) {
150 return String
.fromCharCode(97 + colnum
);
153 // d --> 3 (column letter to number)
154 static ColumnToCoord(column
) {
155 return column
.charCodeAt(0) - 97;
159 static SquareToCoords(sq
) {
161 // NOTE: column is always one char => max 26 columns
162 // row is counted from black side => subtraction
163 x: V
.size
.x
- parseInt(sq
.substr(1)),
164 y: sq
[0].charCodeAt() - 97
169 static CoordsToSquare(coords
) {
170 return V
.CoordToColumn(coords
.y
) + (V
.size
.x
- coords
.x
);
175 return b
; //usual pieces in pieces/ folder
178 // Aggregates flags into one object
180 return this.castleFlags
;
184 disaggregateFlags(flags
) {
185 this.castleFlags
= flags
;
188 // En-passant square, if any
189 getEpSquare(moveOrSquare
) {
190 if (!moveOrSquare
) return undefined;
191 if (typeof moveOrSquare
=== "string") {
192 const square
= moveOrSquare
;
193 if (square
== "-") return undefined;
194 return V
.SquareToCoords(square
);
196 // Argument is a move:
197 const move = moveOrSquare
;
198 const s
= move.start
,
200 // NOTE: next conditions are first for Crazyhouse, and last for Checkered
201 // TODO: Checkered exceptions are too weird and should move in its own file.
203 move.vanish
.length
> 0 &&
204 Math
.abs(s
.x
- e
.x
) == 2 &&
206 move.vanish
[0].p
== V
.PAWN
&&
207 ["w", "b"].includes(move.appear
[0].c
)
214 return undefined; //default
217 // Can thing on square1 take thing on square2
218 canTake([x1
, y1
], [x2
, y2
]) {
219 return this.getColor(x1
, y1
) !== this.getColor(x2
, y2
);
222 // Is (x,y) on the chessboard?
223 static OnBoard(x
, y
) {
224 return x
>= 0 && x
< V
.size
.x
&& y
>= 0 && y
< V
.size
.y
;
227 // Used in interface: 'side' arg == player color
228 canIplay(side
, [x
, y
]) {
229 return this.turn
== side
&& this.getColor(x
, y
) == side
;
232 // On which squares is color under check ? (for interface)
233 getCheckSquares(color
) {
234 return this.isAttacked(this.kingPos
[color
], [V
.GetOppCol(color
)])
235 ? [JSON
.parse(JSON
.stringify(this.kingPos
[color
]))] //need to duplicate!
242 // Setup the initial random (asymmetric) position
243 static GenRandInitFen(randomness
) {
246 return "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w 0 1111 -";
248 let pieces
= { w: new Array(8), b: new Array(8) };
249 // Shuffle pieces on first (and last rank if randomness == 2)
250 for (let c
of ["w", "b"]) {
251 if (c
== 'b' && randomness
== 1) {
252 pieces
['b'] = pieces
['w'];
256 let positions
= ArrayFun
.range(8);
258 // Get random squares for bishops
259 let randIndex
= 2 * randInt(4);
260 const bishop1Pos
= positions
[randIndex
];
261 // The second bishop must be on a square of different color
262 let randIndex_tmp
= 2 * randInt(4) + 1;
263 const bishop2Pos
= positions
[randIndex_tmp
];
264 // Remove chosen squares
265 positions
.splice(Math
.max(randIndex
, randIndex_tmp
), 1);
266 positions
.splice(Math
.min(randIndex
, randIndex_tmp
), 1);
268 // Get random squares for knights
269 randIndex
= randInt(6);
270 const knight1Pos
= positions
[randIndex
];
271 positions
.splice(randIndex
, 1);
272 randIndex
= randInt(5);
273 const knight2Pos
= positions
[randIndex
];
274 positions
.splice(randIndex
, 1);
276 // Get random square for queen
277 randIndex
= randInt(4);
278 const queenPos
= positions
[randIndex
];
279 positions
.splice(randIndex
, 1);
281 // Rooks and king positions are now fixed,
282 // because of the ordering rook-king-rook
283 const rook1Pos
= positions
[0];
284 const kingPos
= positions
[1];
285 const rook2Pos
= positions
[2];
287 // Finally put the shuffled pieces in the board array
288 pieces
[c
][rook1Pos
] = "r";
289 pieces
[c
][knight1Pos
] = "n";
290 pieces
[c
][bishop1Pos
] = "b";
291 pieces
[c
][queenPos
] = "q";
292 pieces
[c
][kingPos
] = "k";
293 pieces
[c
][bishop2Pos
] = "b";
294 pieces
[c
][knight2Pos
] = "n";
295 pieces
[c
][rook2Pos
] = "r";
297 // Add turn + flags + enpassant
299 pieces
["b"].join("") +
300 "/pppppppp/8/8/8/8/PPPPPPPP/" +
301 pieces
["w"].join("").toUpperCase() +
306 // "Parse" FEN: just return untransformed string data
307 static ParseFen(fen
) {
308 const fenParts
= fen
.split(" ");
310 position: fenParts
[0],
312 movesCount: fenParts
[2]
315 if (V
.HasFlags
) Object
.assign(res
, { flags: fenParts
[nextIdx
++] });
316 if (V
.HasEnpassant
) Object
.assign(res
, { enpassant: fenParts
[nextIdx
] });
320 // Return current fen (game state)
323 this.getBaseFen() + " " +
324 this.getTurnFen() + " " +
326 (V
.HasFlags
? " " + this.getFlagsFen() : "") +
327 (V
.HasEnpassant
? " " + this.getEnpassantFen() : "")
332 // Omit movesCount, only variable allowed to differ
334 this.getBaseFen() + "_" +
336 (V
.HasFlags
? "_" + this.getFlagsFen() : "") +
337 (V
.HasEnpassant
? "_" + this.getEnpassantFen() : "")
341 // Position part of the FEN string
344 for (let i
= 0; i
< V
.size
.x
; i
++) {
346 for (let j
= 0; j
< V
.size
.y
; j
++) {
347 if (this.board
[i
][j
] == V
.EMPTY
) emptyCount
++;
349 if (emptyCount
> 0) {
350 // Add empty squares in-between
351 position
+= emptyCount
;
354 position
+= V
.board2fen(this.board
[i
][j
]);
357 if (emptyCount
> 0) {
359 position
+= emptyCount
;
361 if (i
< V
.size
.x
- 1) position
+= "/"; //separate rows
370 // Flags part of the FEN string
373 // Add castling flags
374 for (let i
of ["w", "b"]) {
375 for (let j
= 0; j
< 2; j
++) flags
+= this.castleFlags
[i
][j
] ? "1" : "0";
380 // Enpassant part of the FEN string
382 const L
= this.epSquares
.length
;
383 if (!this.epSquares
[L
- 1]) return "-"; //no en-passant
384 return V
.CoordsToSquare(this.epSquares
[L
- 1]);
387 // Turn position fen into double array ["wb","wp","bk",...]
388 static GetBoard(position
) {
389 const rows
= position
.split("/");
390 let board
= ArrayFun
.init(V
.size
.x
, V
.size
.y
, "");
391 for (let i
= 0; i
< rows
.length
; i
++) {
393 for (let indexInRow
= 0; indexInRow
< rows
[i
].length
; indexInRow
++) {
394 const character
= rows
[i
][indexInRow
];
395 const num
= parseInt(character
);
396 // If num is a number, just shift j:
397 if (!isNaN(num
)) j
+= num
;
398 // Else: something at position i,j
399 else board
[i
][j
++] = V
.fen2board(character
);
405 // Extract (relevant) flags from fen
407 // white a-castle, h-castle, black a-castle, h-castle
408 this.castleFlags
= { w: [true, true], b: [true, true] };
409 for (let i
= 0; i
< 4; i
++)
410 this.castleFlags
[i
< 2 ? "w" : "b"][i
% 2] = fenflags
.charAt(i
) == "1";
416 // Fen string fully describes the game state
419 // In printDiagram() fen isn't supply because only getPpath() is used
420 // TODO: find a better solution!
422 const fenParsed
= V
.ParseFen(fen
);
423 this.board
= V
.GetBoard(fenParsed
.position
);
424 this.turn
= fenParsed
.turn
[0]; //[0] to work with MarseilleRules
425 this.movesCount
= parseInt(fenParsed
.movesCount
);
426 this.setOtherVariables(fen
);
429 // Scan board for kings and rooks positions
430 scanKingsRooks(fen
) {
431 this.INIT_COL_KING
= { w: -1, b: -1 };
432 this.INIT_COL_ROOK
= { w: [-1, -1], b: [-1, -1] };
433 this.kingPos
= { w: [-1, -1], b: [-1, -1] }; //squares of white and black king
434 const fenRows
= V
.ParseFen(fen
).position
.split("/");
435 for (let i
= 0; i
< fenRows
.length
; i
++) {
436 let k
= 0; //column index on board
437 for (let j
= 0; j
< fenRows
[i
].length
; j
++) {
438 switch (fenRows
[i
].charAt(j
)) {
440 this.kingPos
["b"] = [i
, k
];
441 this.INIT_COL_KING
["b"] = k
;
444 this.kingPos
["w"] = [i
, k
];
445 this.INIT_COL_KING
["w"] = k
;
448 if (this.INIT_COL_ROOK
["b"][0] < 0) this.INIT_COL_ROOK
["b"][0] = k
;
449 else this.INIT_COL_ROOK
["b"][1] = k
;
452 if (this.INIT_COL_ROOK
["w"][0] < 0) this.INIT_COL_ROOK
["w"][0] = k
;
453 else this.INIT_COL_ROOK
["w"][1] = k
;
456 const num
= parseInt(fenRows
[i
].charAt(j
));
457 if (!isNaN(num
)) k
+= num
- 1;
465 // Some additional variables from FEN (variant dependant)
466 setOtherVariables(fen
) {
467 // Set flags and enpassant:
468 const parsedFen
= V
.ParseFen(fen
);
469 if (V
.HasFlags
) this.setFlags(parsedFen
.flags
);
470 if (V
.HasEnpassant
) {
472 parsedFen
.enpassant
!= "-"
473 ? this.getEpSquare(parsedFen
.enpassant
)
475 this.epSquares
= [epSq
];
477 // Search for king and rooks positions:
478 this.scanKingsRooks(fen
);
481 /////////////////////
485 return { x: 8, y: 8 };
488 // Color of thing on square (i,j). 'undefined' if square is empty
490 return this.board
[i
][j
].charAt(0);
493 // Piece type on square (i,j). 'undefined' if square is empty
495 return this.board
[i
][j
].charAt(1);
498 // Get opponent color
499 static GetOppCol(color
) {
500 return color
== "w" ? "b" : "w";
503 // Pieces codes (for a clearer code)
510 static get KNIGHT() {
513 static get BISHOP() {
524 static get PIECES() {
525 return [V
.PAWN
, V
.ROOK
, V
.KNIGHT
, V
.BISHOP
, V
.QUEEN
, V
.KING
];
533 // Some pieces movements
564 // All possible moves from selected square
565 getPotentialMovesFrom([x
, y
]) {
566 switch (this.getPiece(x
, y
)) {
568 return this.getPotentialPawnMoves([x
, y
]);
570 return this.getPotentialRookMoves([x
, y
]);
572 return this.getPotentialKnightMoves([x
, y
]);
574 return this.getPotentialBishopMoves([x
, y
]);
576 return this.getPotentialQueenMoves([x
, y
]);
578 return this.getPotentialKingMoves([x
, y
]);
580 return []; //never reached
583 // Build a regular move from its initial and destination squares.
584 // tr: transformation
585 getBasicMove([sx
, sy
], [ex
, ey
], tr
) {
591 c: tr
? tr
.c : this.getColor(sx
, sy
),
592 p: tr
? tr
.p : this.getPiece(sx
, sy
)
599 c: this.getColor(sx
, sy
),
600 p: this.getPiece(sx
, sy
)
605 // The opponent piece disappears if we take it
606 if (this.board
[ex
][ey
] != V
.EMPTY
) {
611 c: this.getColor(ex
, ey
),
612 p: this.getPiece(ex
, ey
)
620 // Generic method to find possible moves of non-pawn pieces:
621 // "sliding or jumping"
622 getSlideNJumpMoves([x
, y
], steps
, oneStep
) {
624 outerLoop: for (let step
of steps
) {
627 while (V
.OnBoard(i
, j
) && this.board
[i
][j
] == V
.EMPTY
) {
628 moves
.push(this.getBasicMove([x
, y
], [i
, j
]));
629 if (oneStep
) continue outerLoop
;
633 if (V
.OnBoard(i
, j
) && this.canTake([x
, y
], [i
, j
]))
634 moves
.push(this.getBasicMove([x
, y
], [i
, j
]));
639 // What are the pawn moves from square x,y ?
640 getPotentialPawnMoves([x
, y
]) {
641 const color
= this.turn
;
643 const [sizeX
, sizeY
] = [V
.size
.x
, V
.size
.y
];
644 const shiftX
= color
== "w" ? -1 : 1;
645 const firstRank
= color
== "w" ? sizeX
- 1 : 0;
646 const startRank
= color
== "w" ? sizeX
- 2 : 1;
647 const lastRank
= color
== "w" ? 0 : sizeX
- 1;
648 const pawnColor
= this.getColor(x
, y
); //can be different for checkered
650 // NOTE: next condition is generally true (no pawn on last rank)
651 if (x
+ shiftX
>= 0 && x
+ shiftX
< sizeX
) {
653 x
+ shiftX
== lastRank
654 ? [V
.ROOK
, V
.KNIGHT
, V
.BISHOP
, V
.QUEEN
]
656 if (this.board
[x
+ shiftX
][y
] == V
.EMPTY
) {
657 // One square forward
658 for (let piece
of finalPieces
) {
660 this.getBasicMove([x
, y
], [x
+ shiftX
, y
], {
666 // Next condition because pawns on 1st rank can generally jump
668 [startRank
, firstRank
].includes(x
) &&
669 this.board
[x
+ 2 * shiftX
][y
] == V
.EMPTY
672 moves
.push(this.getBasicMove([x
, y
], [x
+ 2 * shiftX
, y
]));
676 for (let shiftY
of [-1, 1]) {
679 y
+ shiftY
< sizeY
&&
680 this.board
[x
+ shiftX
][y
+ shiftY
] != V
.EMPTY
&&
681 this.canTake([x
, y
], [x
+ shiftX
, y
+ shiftY
])
683 for (let piece
of finalPieces
) {
685 this.getBasicMove([x
, y
], [x
+ shiftX
, y
+ shiftY
], {
695 if (V
.HasEnpassant
) {
697 const Lep
= this.epSquares
.length
;
698 const epSquare
= this.epSquares
[Lep
- 1]; //always at least one element
701 epSquare
.x
== x
+ shiftX
&&
702 Math
.abs(epSquare
.y
- y
) == 1
704 let enpassantMove
= this.getBasicMove([x
, y
], [epSquare
.x
, epSquare
.y
]);
705 enpassantMove
.vanish
.push({
709 c: this.getColor(x
, epSquare
.y
)
711 moves
.push(enpassantMove
);
718 // What are the rook moves from square x,y ?
719 getPotentialRookMoves(sq
) {
720 return this.getSlideNJumpMoves(sq
, V
.steps
[V
.ROOK
]);
723 // What are the knight moves from square x,y ?
724 getPotentialKnightMoves(sq
) {
725 return this.getSlideNJumpMoves(sq
, V
.steps
[V
.KNIGHT
], "oneStep");
728 // What are the bishop moves from square x,y ?
729 getPotentialBishopMoves(sq
) {
730 return this.getSlideNJumpMoves(sq
, V
.steps
[V
.BISHOP
]);
733 // What are the queen moves from square x,y ?
734 getPotentialQueenMoves(sq
) {
735 return this.getSlideNJumpMoves(
737 V
.steps
[V
.ROOK
].concat(V
.steps
[V
.BISHOP
])
741 // What are the king moves from square x,y ?
742 getPotentialKingMoves(sq
) {
743 // Initialize with normal moves
744 let moves
= this.getSlideNJumpMoves(
746 V
.steps
[V
.ROOK
].concat(V
.steps
[V
.BISHOP
]),
749 return moves
.concat(this.getCastleMoves(sq
));
752 getCastleMoves([x
, y
]) {
753 const c
= this.getColor(x
, y
);
754 if (x
!= (c
== "w" ? V
.size
.x
- 1 : 0) || y
!= this.INIT_COL_KING
[c
])
755 return []; //x isn't first rank, or king has moved (shortcut)
758 const oppCol
= V
.GetOppCol(c
);
762 const finalSquares
= [
764 [V
.size
.y
- 2, V
.size
.y
- 3]
769 castleSide
++ //large, then small
771 if (!this.castleFlags
[c
][castleSide
]) continue;
772 // If this code is reached, rooks and king are on initial position
774 // Nothing on the path of the king ? (and no checks)
775 const finDist
= finalSquares
[castleSide
][0] - y
;
776 let step
= finDist
/ Math
.max(1, Math
.abs(finDist
));
780 this.isAttacked([x
, i
], [oppCol
]) ||
781 (this.board
[x
][i
] != V
.EMPTY
&&
782 // NOTE: next check is enough, because of chessboard constraints
783 (this.getColor(x
, i
) != c
||
784 ![V
.KING
, V
.ROOK
].includes(this.getPiece(x
, i
))))
786 continue castlingCheck
;
789 } while (i
!= finalSquares
[castleSide
][0]);
791 // Nothing on the path to the rook?
792 step
= castleSide
== 0 ? -1 : 1;
793 for (i
= y
+ step
; i
!= this.INIT_COL_ROOK
[c
][castleSide
]; i
+= step
) {
794 if (this.board
[x
][i
] != V
.EMPTY
) continue castlingCheck
;
796 const rookPos
= this.INIT_COL_ROOK
[c
][castleSide
];
798 // Nothing on final squares, except maybe king and castling rook?
799 for (i
= 0; i
< 2; i
++) {
801 this.board
[x
][finalSquares
[castleSide
][i
]] != V
.EMPTY
&&
802 this.getPiece(x
, finalSquares
[castleSide
][i
]) != V
.KING
&&
803 finalSquares
[castleSide
][i
] != rookPos
805 continue castlingCheck
;
809 // If this code is reached, castle is valid
813 new PiPo({ x: x
, y: finalSquares
[castleSide
][0], p: V
.KING
, c: c
}),
814 new PiPo({ x: x
, y: finalSquares
[castleSide
][1], p: V
.ROOK
, c: c
})
817 new PiPo({ x: x
, y: y
, p: V
.KING
, c: c
}),
818 new PiPo({ x: x
, y: rookPos
, p: V
.ROOK
, c: c
})
821 Math
.abs(y
- rookPos
) <= 2
822 ? { x: x
, y: rookPos
}
823 : { x: x
, y: y
+ 2 * (castleSide
== 0 ? -1 : 1) }
834 // For the interface: possible moves for the current turn from square sq
835 getPossibleMovesFrom(sq
) {
836 return this.filterValid(this.getPotentialMovesFrom(sq
));
839 // TODO: promotions (into R,B,N,Q) should be filtered only once
841 if (moves
.length
== 0) return [];
842 const color
= this.turn
;
843 return moves
.filter(m
=> {
845 const res
= !this.underCheck(color
);
851 // Search for all valid moves considering current turn
852 // (for engine and game end)
854 const color
= this.turn
;
855 let potentialMoves
= [];
856 for (let i
= 0; i
< V
.size
.x
; i
++) {
857 for (let j
= 0; j
< V
.size
.y
; j
++) {
858 if (this.getColor(i
, j
) == color
) {
859 Array
.prototype.push
.apply(
861 this.getPotentialMovesFrom([i
, j
])
866 return this.filterValid(potentialMoves
);
869 // Stop at the first move found
871 const color
= this.turn
;
872 for (let i
= 0; i
< V
.size
.x
; i
++) {
873 for (let j
= 0; j
< V
.size
.y
; j
++) {
874 if (this.getColor(i
, j
) == color
) {
875 const moves
= this.getPotentialMovesFrom([i
, j
]);
876 if (moves
.length
> 0) {
877 for (let k
= 0; k
< moves
.length
; k
++) {
878 if (this.filterValid([moves
[k
]]).length
> 0) return true;
887 // Check if pieces of color in 'colors' are attacking (king) on square x,y
888 isAttacked(sq
, colors
) {
890 this.isAttackedByPawn(sq
, colors
) ||
891 this.isAttackedByRook(sq
, colors
) ||
892 this.isAttackedByKnight(sq
, colors
) ||
893 this.isAttackedByBishop(sq
, colors
) ||
894 this.isAttackedByQueen(sq
, colors
) ||
895 this.isAttackedByKing(sq
, colors
)
899 // Generic method for non-pawn pieces ("sliding or jumping"):
900 // is x,y attacked by a piece of color in array 'colors' ?
901 isAttackedBySlideNJump([x
, y
], colors
, piece
, steps
, oneStep
) {
902 for (let step
of steps
) {
903 let rx
= x
+ step
[0],
905 while (V
.OnBoard(rx
, ry
) && this.board
[rx
][ry
] == V
.EMPTY
&& !oneStep
) {
911 this.getPiece(rx
, ry
) === piece
&&
912 colors
.includes(this.getColor(rx
, ry
))
920 // Is square x,y attacked by 'colors' pawns ?
921 isAttackedByPawn([x
, y
], colors
) {
922 for (let c
of colors
) {
923 const pawnShift
= c
== "w" ? 1 : -1;
924 if (x
+ pawnShift
>= 0 && x
+ pawnShift
< V
.size
.x
) {
925 for (let i
of [-1, 1]) {
929 this.getPiece(x
+ pawnShift
, y
+ i
) == V
.PAWN
&&
930 this.getColor(x
+ pawnShift
, y
+ i
) == c
940 // Is square x,y attacked by 'colors' rooks ?
941 isAttackedByRook(sq
, colors
) {
942 return this.isAttackedBySlideNJump(sq
, colors
, V
.ROOK
, V
.steps
[V
.ROOK
]);
945 // Is square x,y attacked by 'colors' knights ?
946 isAttackedByKnight(sq
, colors
) {
947 return this.isAttackedBySlideNJump(
956 // Is square x,y attacked by 'colors' bishops ?
957 isAttackedByBishop(sq
, colors
) {
958 return this.isAttackedBySlideNJump(sq
, colors
, V
.BISHOP
, V
.steps
[V
.BISHOP
]);
961 // Is square x,y attacked by 'colors' queens ?
962 isAttackedByQueen(sq
, colors
) {
963 return this.isAttackedBySlideNJump(
967 V
.steps
[V
.ROOK
].concat(V
.steps
[V
.BISHOP
])
971 // Is square x,y attacked by 'colors' king(s) ?
972 isAttackedByKing(sq
, colors
) {
973 return this.isAttackedBySlideNJump(
977 V
.steps
[V
.ROOK
].concat(V
.steps
[V
.BISHOP
]),
982 // Is color under check after his move ?
984 return this.isAttacked(this.kingPos
[color
], [V
.GetOppCol(color
)]);
990 // Apply a move on board
991 static PlayOnBoard(board
, move) {
992 for (let psq
of move.vanish
) board
[psq
.x
][psq
.y
] = V
.EMPTY
;
993 for (let psq
of move.appear
) board
[psq
.x
][psq
.y
] = psq
.c
+ psq
.p
;
995 // Un-apply the played move
996 static UndoOnBoard(board
, move) {
997 for (let psq
of move.appear
) board
[psq
.x
][psq
.y
] = V
.EMPTY
;
998 for (let psq
of move.vanish
) board
[psq
.x
][psq
.y
] = psq
.c
+ psq
.p
;
1001 // After move is played, update variables + flags
1002 updateVariables(move) {
1003 let piece
= undefined;
1004 // TODO: update variables before move is played, and just use this.turn ?
1005 // (doesn't work in general, think MarseilleChess)
1007 if (move.vanish
.length
>= 1) {
1008 // Usual case, something is moved
1009 piece
= move.vanish
[0].p
;
1010 c
= move.vanish
[0].c
;
1012 // Crazyhouse-like variants
1013 piece
= move.appear
[0].p
;
1014 c
= move.appear
[0].c
;
1016 if (!['w','b'].includes(c
)) {
1017 // Checkered, for example
1018 c
= V
.GetOppCol(this.turn
);
1020 const firstRank
= c
== "w" ? V
.size
.x
- 1 : 0;
1022 // Update king position + flags
1023 if (piece
== V
.KING
&& move.appear
.length
> 0) {
1024 this.kingPos
[c
][0] = move.appear
[0].x
;
1025 this.kingPos
[c
][1] = move.appear
[0].y
;
1026 if (V
.HasFlags
) this.castleFlags
[c
] = [false, false];
1030 // Update castling flags if rooks are moved
1031 const oppCol
= V
.GetOppCol(c
);
1032 const oppFirstRank
= V
.size
.x
- 1 - firstRank
;
1034 move.start
.x
== firstRank
&& //our rook moves?
1035 this.INIT_COL_ROOK
[c
].includes(move.start
.y
)
1037 const flagIdx
= move.start
.y
== this.INIT_COL_ROOK
[c
][0] ? 0 : 1;
1038 this.castleFlags
[c
][flagIdx
] = false;
1040 move.end
.x
== oppFirstRank
&& //we took opponent rook?
1041 this.INIT_COL_ROOK
[oppCol
].includes(move.end
.y
)
1043 const flagIdx
= move.end
.y
== this.INIT_COL_ROOK
[oppCol
][0] ? 0 : 1;
1044 this.castleFlags
[oppCol
][flagIdx
] = false;
1049 // After move is undo-ed *and flags resetted*, un-update other variables
1050 // TODO: more symmetry, by storing flags increment in move (?!)
1051 unupdateVariables(move) {
1052 // (Potentially) Reset king position
1053 const c
= this.getColor(move.start
.x
, move.start
.y
);
1054 if (this.getPiece(move.start
.x
, move.start
.y
) == V
.KING
)
1055 this.kingPos
[c
] = [move.start
.x
, move.start
.y
];
1060 // if (!this.states) this.states = [];
1061 // const stateFen = this.getBaseFen() + this.getTurnFen() + this.getFlagsFen();
1062 // this.states.push(stateFen);
1064 if (V
.HasFlags
) move.flags
= JSON
.stringify(this.aggregateFlags()); //save flags (for undo)
1065 if (V
.HasEnpassant
) this.epSquares
.push(this.getEpSquare(move));
1066 V
.PlayOnBoard(this.board
, move);
1067 this.turn
= V
.GetOppCol(this.turn
);
1069 this.updateVariables(move);
1073 if (V
.HasEnpassant
) this.epSquares
.pop();
1074 if (V
.HasFlags
) this.disaggregateFlags(JSON
.parse(move.flags
));
1075 V
.UndoOnBoard(this.board
, move);
1076 this.turn
= V
.GetOppCol(this.turn
);
1078 this.unupdateVariables(move);
1081 // const stateFen = this.getBaseFen() + this.getTurnFen() + this.getFlagsFen();
1082 // if (stateFen != this.states[this.states.length-1]) debugger;
1083 // this.states.pop();
1089 // What is the score ? (Interesting if game is over)
1091 if (this.atLeastOneMove())
1095 const color
= this.turn
;
1096 // No valid move: stalemate or checkmate?
1097 if (!this.isAttacked(this.kingPos
[color
], [V
.GetOppCol(color
)]))
1100 return color
== "w" ? "0-1" : "1-0";
1107 static get VALUES() {
1118 // "Checkmate" (unreachable eval)
1119 static get INFINITY() {
1123 // At this value or above, the game is over
1124 static get THRESHOLD_MATE() {
1128 // Search depth: 2 for high branching factor, 4 for small (Loser chess, eg.)
1129 static get SEARCH_DEPTH() {
1134 const maxeval
= V
.INFINITY
;
1135 const color
= this.turn
;
1136 // Some variants may show a bigger moves list to the human (Switching),
1137 // thus the argument "computer" below (which is generally ignored)
1138 let moves1
= this.getAllValidMoves();
1140 if (moves1
.length
== 0)
1141 // TODO: this situation should not happen
1144 // Rank moves using a min-max at depth 2
1145 for (let i
= 0; i
< moves1
.length
; i
++) {
1146 // Initial self evaluation is very low: "I'm checkmated"
1147 moves1
[i
].eval
= (color
== "w" ? -1 : 1) * maxeval
;
1148 this.play(moves1
[i
]);
1149 const score1
= this.getCurrentScore();
1150 let eval2
= undefined;
1151 if (score1
== "*") {
1152 // Initial enemy evaluation is very low too, for him
1153 eval2
= (color
== "w" ? 1 : -1) * maxeval
;
1154 // Second half-move:
1155 let moves2
= this.getAllValidMoves();
1156 for (let j
= 0; j
< moves2
.length
; j
++) {
1157 this.play(moves2
[j
]);
1158 const score2
= this.getCurrentScore();
1159 let evalPos
= 0; //1/2 value
1162 evalPos
= this.evalPosition();
1172 (color
== "w" && evalPos
< eval2
) ||
1173 (color
== "b" && evalPos
> eval2
)
1177 this.undo(moves2
[j
]);
1179 } else eval2
= score1
== "1/2" ? 0 : (score1
== "1-0" ? 1 : -1) * maxeval
;
1181 (color
== "w" && eval2
> moves1
[i
].eval
) ||
1182 (color
== "b" && eval2
< moves1
[i
].eval
)
1184 moves1
[i
].eval
= eval2
;
1186 this.undo(moves1
[i
]);
1188 moves1
.sort((a
, b
) => {
1189 return (color
== "w" ? 1 : -1) * (b
.eval
- a
.eval
);
1191 // console.log(moves1.map(m => { return [this.getNotation(m), m.eval]; }));
1193 let candidates
= [0]; //indices of candidates moves
1194 for (let j
= 1; j
< moves1
.length
&& moves1
[j
].eval
== moves1
[0].eval
; j
++)
1196 let currentBest
= moves1
[candidates
[randInt(candidates
.length
)]];
1198 // Skip depth 3+ if we found a checkmate (or if we are checkmated in 1...)
1199 if (V
.SEARCH_DEPTH
>= 3 && Math
.abs(moves1
[0].eval
) < V
.THRESHOLD_MATE
) {
1200 // From here, depth >= 3: may take a while, so we control time
1201 const timeStart
= Date
.now();
1202 for (let i
= 0; i
< moves1
.length
; i
++) {
1203 if (Date
.now() - timeStart
>= 5000)
1204 //more than 5 seconds
1205 return currentBest
; //depth 2 at least
1206 this.play(moves1
[i
]);
1207 // 0.1 * oldEval : heuristic to avoid some bad moves (not all...)
1209 0.1 * moves1
[i
].eval
+
1210 this.alphabeta(V
.SEARCH_DEPTH
- 1, -maxeval
, maxeval
);
1211 this.undo(moves1
[i
]);
1213 moves1
.sort((a
, b
) => {
1214 return (color
== "w" ? 1 : -1) * (b
.eval
- a
.eval
);
1216 } else return currentBest
;
1217 // console.log(moves1.map(m => { return [this.getNotation(m), m.eval]; }));
1220 for (let j
= 1; j
< moves1
.length
&& moves1
[j
].eval
== moves1
[0].eval
; j
++)
1222 return moves1
[candidates
[randInt(candidates
.length
)]];
1225 alphabeta(depth
, alpha
, beta
) {
1226 const maxeval
= V
.INFINITY
;
1227 const color
= this.turn
;
1228 const score
= this.getCurrentScore();
1230 return score
== "1/2" ? 0 : (score
== "1-0" ? 1 : -1) * maxeval
;
1231 if (depth
== 0) return this.evalPosition();
1232 const moves
= this.getAllValidMoves();
1233 let v
= color
== "w" ? -maxeval : maxeval
;
1235 for (let i
= 0; i
< moves
.length
; i
++) {
1236 this.play(moves
[i
]);
1237 v
= Math
.max(v
, this.alphabeta(depth
- 1, alpha
, beta
));
1238 this.undo(moves
[i
]);
1239 alpha
= Math
.max(alpha
, v
);
1240 if (alpha
>= beta
) break; //beta cutoff
1245 for (let i
= 0; i
< moves
.length
; i
++) {
1246 this.play(moves
[i
]);
1247 v
= Math
.min(v
, this.alphabeta(depth
- 1, alpha
, beta
));
1248 this.undo(moves
[i
]);
1249 beta
= Math
.min(beta
, v
);
1250 if (alpha
>= beta
) break; //alpha cutoff
1258 // Just count material for now
1259 for (let i
= 0; i
< V
.size
.x
; i
++) {
1260 for (let j
= 0; j
< V
.size
.y
; j
++) {
1261 if (this.board
[i
][j
] != V
.EMPTY
) {
1262 const sign
= this.getColor(i
, j
) == "w" ? 1 : -1;
1263 evaluation
+= sign
* V
.VALUES
[this.getPiece(i
, j
)];
1270 /////////////////////////
1271 // MOVES + GAME NOTATION
1272 /////////////////////////
1274 // Context: just before move is played, turn hasn't changed
1275 // TODO: un-ambiguous notation (switch on piece type, check directions...)
1277 if (move.appear
.length
== 2 && move.appear
[0].p
== V
.KING
)
1279 return move.end
.y
< move.start
.y
? "0-0-0" : "0-0";
1281 // Translate final square
1282 const finalSquare
= V
.CoordsToSquare(move.end
);
1284 const piece
= this.getPiece(move.start
.x
, move.start
.y
);
1285 if (piece
== V
.PAWN
) {
1288 if (move.vanish
.length
> move.appear
.length
) {
1290 const startColumn
= V
.CoordToColumn(move.start
.y
);
1291 notation
= startColumn
+ "x" + finalSquare
;
1293 else notation
= finalSquare
;
1294 if (move.appear
.length
> 0 && move.appear
[0].p
!= V
.PAWN
)
1296 notation
+= "=" + move.appear
[0].p
.toUpperCase();
1301 piece
.toUpperCase() +
1302 (move.vanish
.length
> move.appear
.length
? "x" : "") +