| 1 | import { ChessRules } from "@/base_rules"; |
| 2 | |
| 3 | export class Knightmate2Rules extends ChessRules { |
| 4 | |
| 5 | static get HasFlags() { |
| 6 | return false; |
| 7 | } |
| 8 | |
| 9 | static get COMMONER() { |
| 10 | return "c"; |
| 11 | } |
| 12 | |
| 13 | static get PIECES() { |
| 14 | return ChessRules.PIECES.concat([V.COMMONER]); |
| 15 | } |
| 16 | |
| 17 | getPpath(b) { |
| 18 | return ([V.KING, V.COMMONER].includes(b[1]) ? "Knightmate/" : "") + b; |
| 19 | } |
| 20 | |
| 21 | static IsGoodPosition(position) { |
| 22 | if (position.length == 0) return false; |
| 23 | const rows = position.split("/"); |
| 24 | if (rows.length != V.size.x) return false; |
| 25 | let kings = { "k": 0, "K": 0 }; |
| 26 | for (let row of rows) { |
| 27 | let sumElts = 0; |
| 28 | for (let i = 0; i < row.length; i++) { |
| 29 | if (['K','k'].includes(row[i])) kings[row[i]]++; |
| 30 | if (V.PIECES.includes(row[i].toLowerCase())) sumElts++; |
| 31 | else { |
| 32 | const num = parseInt(row[i], 10); |
| 33 | if (isNaN(num) || num <= 0) return false; |
| 34 | sumElts += num; |
| 35 | } |
| 36 | } |
| 37 | if (sumElts != V.size.y) return false; |
| 38 | } |
| 39 | // 1 or 2 kings should be on board. |
| 40 | if (Object.values(kings).some(k => ![1, 2].includes(k))) return false; |
| 41 | return true; |
| 42 | } |
| 43 | |
| 44 | scanKings() {} |
| 45 | |
| 46 | static GenRandInitFen(options) { |
| 47 | return ( |
| 48 | ChessRules.GenRandInitFen(options) |
| 49 | .replace(/k/g, 'c').replace(/K/g, 'C') |
| 50 | .replace(/n/g, 'k').replace(/N/g, 'K') |
| 51 | ); |
| 52 | } |
| 53 | |
| 54 | getPotentialMovesFrom([x, y]) { |
| 55 | switch (this.getPiece(x, y)) { |
| 56 | case V.COMMONER: |
| 57 | return this.getPotentialCommonerMoves([x, y]); |
| 58 | default: |
| 59 | return super.getPotentialMovesFrom([x, y]); |
| 60 | } |
| 61 | } |
| 62 | |
| 63 | getPotentialCommonerMoves(sq) { |
| 64 | return this.getSlideNJumpMoves( |
| 65 | sq, V.steps[V.ROOK].concat(V.steps[V.BISHOP]), 1); |
| 66 | } |
| 67 | |
| 68 | getPotentialKingMoves(sq) { |
| 69 | return super.getPotentialKnightMoves(sq); |
| 70 | } |
| 71 | |
| 72 | isAttacked(sq, color) { |
| 73 | return ( |
| 74 | this.isAttackedByCommoner(sq, color) || |
| 75 | this.isAttackedByPawn(sq, color) || |
| 76 | this.isAttackedByRook(sq, color) || |
| 77 | this.isAttackedByBishop(sq, color) || |
| 78 | this.isAttackedByQueen(sq, color) || |
| 79 | this.isAttackedByKing(sq, color) |
| 80 | ); |
| 81 | } |
| 82 | |
| 83 | isAttackedByKing(sq, color) { |
| 84 | return this.isAttackedBySlideNJump( |
| 85 | sq, color, V.KING, V.steps[V.KNIGHT], 1); |
| 86 | } |
| 87 | |
| 88 | isAttackedByCommoner(sq, color) { |
| 89 | return this.isAttackedBySlideNJump( |
| 90 | sq, color, V.COMMONER, V.steps[V.ROOK].concat(V.steps[V.BISHOP]), 1); |
| 91 | } |
| 92 | |
| 93 | postPlay() {} |
| 94 | postUndo() {} |
| 95 | |
| 96 | // NOTE: 4 next functions (almost) copy-paste from Spartan Chess |
| 97 | getKingsPos(color) { |
| 98 | let kings = []; |
| 99 | for (let i=0; i<8; i++) { |
| 100 | for (let j=0; j<8; j++) { |
| 101 | if ( |
| 102 | this.board[i][j] != V.EMPTY && |
| 103 | this.getColor(i, j) == color && |
| 104 | this.getPiece(i, j) == V.KING |
| 105 | ) { |
| 106 | kings.push({ x: i, y: j }); |
| 107 | } |
| 108 | } |
| 109 | } |
| 110 | return kings; |
| 111 | } |
| 112 | |
| 113 | getCheckSquares() { |
| 114 | const color = this.turn; |
| 115 | const oppCol = V.GetOppCol(color); |
| 116 | const kings = this.getKingsPos(color); |
| 117 | let res = []; |
| 118 | for (let i of [0, 1]) { |
| 119 | if ( |
| 120 | kings.length >= i+1 && |
| 121 | this.isAttacked([kings[i].x, kings[i].y], oppCol) |
| 122 | ) { |
| 123 | res.push([kings[i].x, kings[i].y]); |
| 124 | } |
| 125 | } |
| 126 | return res; |
| 127 | } |
| 128 | |
| 129 | filterValid(moves) { |
| 130 | if (moves.length == 0) return []; |
| 131 | const color = moves[0].vanish[0].c; |
| 132 | const oppCol = V.GetOppCol(color); |
| 133 | // Check if both kings under attack. |
| 134 | // If yes, moves must remove at least one attack. |
| 135 | const kings = this.getKingsPos(color); |
| 136 | return moves.filter(m => { |
| 137 | this.play(m); |
| 138 | let attacks = 0; |
| 139 | for (let k of kings) { |
| 140 | const curKingPos = |
| 141 | this.board[k.x][k.y] == V.EMPTY |
| 142 | ? [m.appear[0].x, m.appear[0].y] //king moved |
| 143 | : [k.x, k.y] |
| 144 | if (this.isAttacked(curKingPos, oppCol)) attacks++; |
| 145 | else break; //no need to check further |
| 146 | } |
| 147 | this.undo(m); |
| 148 | return ( |
| 149 | (kings.length == 2 && attacks <= 1) || |
| 150 | (kings.length == 1 && attacks == 0) |
| 151 | ); |
| 152 | }); |
| 153 | } |
| 154 | |
| 155 | getCurrentScore() { |
| 156 | if (super.atLeastOneMove()) return "*"; |
| 157 | // Count kings on board |
| 158 | const color = this.turn; |
| 159 | const oppCol = V.GetOppCol(color); |
| 160 | const kings = this.getKingsPos(color); |
| 161 | if ( |
| 162 | this.isAttacked([kings[0].x, kings[0].y], oppCol) || |
| 163 | (kings.length == 2 && this.isAttacked([kings[1].x, kings[1].y], oppCol)) |
| 164 | ) { |
| 165 | return (color == 'w' ? "0-1" : "1-0"); |
| 166 | } |
| 167 | return "1/2"; //stalemate |
| 168 | } |
| 169 | |
| 170 | static get VALUES() { |
| 171 | return { |
| 172 | p: 1, |
| 173 | r: 5, |
| 174 | c: 5, //the commoner is valuable |
| 175 | b: 3, |
| 176 | q: 9, |
| 177 | k: 1000 |
| 178 | }; |
| 179 | } |
| 180 | |
| 181 | }; |