| 1 | import { ChessRules, PiPo, Move } from "@/base_rules"; |
| 2 | import { ArrayFun } from "@/utils/array"; |
| 3 | import { randInt, shuffle } from "@/utils/alea"; |
| 4 | |
| 5 | export class CylinderRules extends ChessRules { |
| 6 | |
| 7 | // Output basically x % 8 (circular board) |
| 8 | static ComputeY(y) { |
| 9 | let res = y % V.size.y; |
| 10 | if (res < 0) |
| 11 | res += V.size.y; |
| 12 | return res; |
| 13 | } |
| 14 | |
| 15 | getSlideNJumpMoves([x, y], steps, oneStep) { |
| 16 | let moves = []; |
| 17 | // Don't add move twice when running on an infinite rank: |
| 18 | let infiniteSteps = {}; |
| 19 | outerLoop: for (let step of steps) { |
| 20 | if (!!infiniteSteps[(-step[0]) + "." + (-step[1])]) continue; |
| 21 | let i = x + step[0]; |
| 22 | let j = V.ComputeY(y + step[1]); |
| 23 | while (V.OnBoard(i, j) && this.board[i][j] == V.EMPTY) { |
| 24 | moves.push(this.getBasicMove([x, y], [i, j])); |
| 25 | if (oneStep) continue outerLoop; |
| 26 | i += step[0]; |
| 27 | j = V.ComputeY(j + step[1]); |
| 28 | } |
| 29 | if (V.OnBoard(i, j)) { |
| 30 | if (i == x && j == y) |
| 31 | // Looped back onto initial square |
| 32 | infiniteSteps[step[0] + "." + step[1]] = true; |
| 33 | else if (this.canTake([x, y], [i, j])) |
| 34 | moves.push(this.getBasicMove([x, y], [i, j])); |
| 35 | } |
| 36 | } |
| 37 | return moves; |
| 38 | } |
| 39 | |
| 40 | getPotentialPawnMoves([x, y]) { |
| 41 | const color = this.turn; |
| 42 | let moves = []; |
| 43 | const [sizeX, sizeY] = [V.size.x, V.size.y]; |
| 44 | const shiftX = color == "w" ? -1 : 1; |
| 45 | const startRank = color == "w" ? sizeX - 2 : 1; |
| 46 | const lastRank = color == "w" ? 0 : sizeX - 1; |
| 47 | |
| 48 | const finalPieces = |
| 49 | x + shiftX == lastRank |
| 50 | ? [V.ROOK, V.KNIGHT, V.BISHOP, V.QUEEN] |
| 51 | : [V.PAWN]; |
| 52 | if (this.board[x + shiftX][y] == V.EMPTY) { |
| 53 | // One square forward |
| 54 | for (let piece of finalPieces) { |
| 55 | moves.push( |
| 56 | this.getBasicMove([x, y], [x + shiftX, y], { |
| 57 | c: color, |
| 58 | p: piece |
| 59 | }) |
| 60 | ); |
| 61 | } |
| 62 | if ( |
| 63 | x == startRank && |
| 64 | this.board[x + 2 * shiftX][y] == V.EMPTY |
| 65 | ) { |
| 66 | // Two squares jump |
| 67 | moves.push(this.getBasicMove([x, y], [x + 2 * shiftX, y])); |
| 68 | } |
| 69 | } |
| 70 | // Captures |
| 71 | for (let shiftY of [-1, 1]) { |
| 72 | const nextFile = V.ComputeY(y + shiftY); |
| 73 | if ( |
| 74 | this.board[x + shiftX][nextFile] != V.EMPTY && |
| 75 | this.canTake([x, y], [x + shiftX, nextFile]) |
| 76 | ) { |
| 77 | for (let piece of finalPieces) { |
| 78 | moves.push( |
| 79 | this.getBasicMove([x, y], [x + shiftX, nextFile], { |
| 80 | c: color, |
| 81 | p: piece |
| 82 | }) |
| 83 | ); |
| 84 | } |
| 85 | } |
| 86 | } |
| 87 | |
| 88 | // En passant |
| 89 | const Lep = this.epSquares.length; |
| 90 | const epSquare = this.epSquares[Lep - 1]; //always at least one element |
| 91 | if ( |
| 92 | !!epSquare && |
| 93 | epSquare.x == x + shiftX && |
| 94 | Math.abs( (epSquare.y - y) % V.size.y ) == 1 |
| 95 | ) { |
| 96 | let enpassantMove = this.getBasicMove([x, y], [epSquare.x, epSquare.y]); |
| 97 | enpassantMove.vanish.push({ |
| 98 | x: x, |
| 99 | y: epSquare.y, |
| 100 | p: "p", |
| 101 | c: this.getColor(x, epSquare.y) |
| 102 | }); |
| 103 | moves.push(enpassantMove); |
| 104 | } |
| 105 | |
| 106 | return moves; |
| 107 | } |
| 108 | |
| 109 | isAttackedByPawn([x, y], color) { |
| 110 | let pawnShift = (color == "w" ? 1 : -1); |
| 111 | if (x + pawnShift >= 0 && x + pawnShift < V.size.x) { |
| 112 | for (let i of [-1, 1]) { |
| 113 | const nextFile = V.ComputeY(y + i); |
| 114 | if ( |
| 115 | this.getPiece(x + pawnShift, nextFile) == V.PAWN && |
| 116 | this.getColor(x + pawnShift, nextFile) == color |
| 117 | ) { |
| 118 | return true; |
| 119 | } |
| 120 | } |
| 121 | } |
| 122 | return false; |
| 123 | } |
| 124 | |
| 125 | isAttackedBySlideNJump([x, y], color, piece, steps, oneStep) { |
| 126 | for (let step of steps) { |
| 127 | let rx = x + step[0], |
| 128 | ry = V.ComputeY(y + step[1]); |
| 129 | while (V.OnBoard(rx, ry) && this.board[rx][ry] == V.EMPTY && !oneStep) { |
| 130 | rx += step[0]; |
| 131 | ry = V.ComputeY(ry + step[1]); |
| 132 | } |
| 133 | if ( |
| 134 | V.OnBoard(rx, ry) && |
| 135 | this.getPiece(rx, ry) == piece && |
| 136 | this.getColor(rx, ry) == color |
| 137 | ) { |
| 138 | return true; |
| 139 | } |
| 140 | } |
| 141 | return false; |
| 142 | } |
| 143 | |
| 144 | static get SEARCH_DEPTH() { |
| 145 | return 2; |
| 146 | } |
| 147 | |
| 148 | static get VALUES() { |
| 149 | return { |
| 150 | p: 1, |
| 151 | r: 5, |
| 152 | n: 3, |
| 153 | b: 4, |
| 154 | q: 10, |
| 155 | k: 1000 |
| 156 | }; |
| 157 | } |
| 158 | |
| 159 | }; |