| 1 | import { ChessRules, PiPo, Move } from "@/base_rules"; |
| 2 | import { ArrayFun } from "@/utils/array"; |
| 3 | import { shuffle } from "@/utils/alea"; |
| 4 | |
| 5 | export class BaroqueRules extends ChessRules { |
| 6 | static get HasFlags() { |
| 7 | return false; |
| 8 | } |
| 9 | |
| 10 | static get HasEnpassant() { |
| 11 | return false; |
| 12 | } |
| 13 | |
| 14 | static get PIECES() { |
| 15 | return ChessRules.PIECES.concat([V.IMMOBILIZER]); |
| 16 | } |
| 17 | |
| 18 | getPpath(b) { |
| 19 | if (b[1] == "m") |
| 20 | //'m' for Immobilizer (I is too similar to 1) |
| 21 | return "Baroque/" + b; |
| 22 | return b; //usual piece |
| 23 | } |
| 24 | |
| 25 | // No castling, but checks, so keep track of kings |
| 26 | setOtherVariables(fen) { |
| 27 | this.kingPos = { w: [-1, -1], b: [-1, -1] }; |
| 28 | const fenParts = fen.split(" "); |
| 29 | const position = fenParts[0].split("/"); |
| 30 | for (let i = 0; i < position.length; i++) { |
| 31 | let k = 0; |
| 32 | for (let j = 0; j < position[i].length; j++) { |
| 33 | switch (position[i].charAt(j)) { |
| 34 | case "k": |
| 35 | this.kingPos["b"] = [i, k]; |
| 36 | break; |
| 37 | case "K": |
| 38 | this.kingPos["w"] = [i, k]; |
| 39 | break; |
| 40 | default: { |
| 41 | const num = parseInt(position[i].charAt(j), 10); |
| 42 | if (!isNaN(num)) k += num - 1; |
| 43 | } |
| 44 | } |
| 45 | k++; |
| 46 | } |
| 47 | } |
| 48 | } |
| 49 | |
| 50 | static get IMMOBILIZER() { |
| 51 | return "m"; |
| 52 | } |
| 53 | // Although other pieces keep their names here for coding simplicity, |
| 54 | // keep in mind that: |
| 55 | // - a "rook" is a coordinator, capturing by coordinating with the king |
| 56 | // - a "knight" is a long-leaper, capturing as in draughts |
| 57 | // - a "bishop" is a chameleon, capturing as its prey |
| 58 | // - a "queen" is a withdrawer, capturing by moving away from pieces |
| 59 | |
| 60 | // Is piece on square (x,y) immobilized? |
| 61 | isImmobilized([x, y]) { |
| 62 | const piece = this.getPiece(x, y); |
| 63 | const color = this.getColor(x, y); |
| 64 | const oppCol = V.GetOppCol(color); |
| 65 | const adjacentSteps = V.steps[V.ROOK].concat(V.steps[V.BISHOP]); |
| 66 | for (let step of adjacentSteps) { |
| 67 | const [i, j] = [x + step[0], y + step[1]]; |
| 68 | if ( |
| 69 | V.OnBoard(i, j) && |
| 70 | this.board[i][j] != V.EMPTY && |
| 71 | this.getColor(i, j) == oppCol |
| 72 | ) { |
| 73 | const oppPiece = this.getPiece(i, j); |
| 74 | if (oppPiece == V.IMMOBILIZER) { |
| 75 | // Moving is possible only if this immobilizer is neutralized |
| 76 | for (let step2 of adjacentSteps) { |
| 77 | const [i2, j2] = [i + step2[0], j + step2[1]]; |
| 78 | if (i2 == x && j2 == y) continue; //skip initial piece! |
| 79 | if ( |
| 80 | V.OnBoard(i2, j2) && |
| 81 | this.board[i2][j2] != V.EMPTY && |
| 82 | this.getColor(i2, j2) == color |
| 83 | ) { |
| 84 | if ([V.BISHOP, V.IMMOBILIZER].includes(this.getPiece(i2, j2))) |
| 85 | return false; |
| 86 | } |
| 87 | } |
| 88 | return true; //immobilizer isn't neutralized |
| 89 | } |
| 90 | // Chameleons can't be immobilized twice, |
| 91 | // because there is only one immobilizer |
| 92 | if (oppPiece == V.BISHOP && piece == V.IMMOBILIZER) return true; |
| 93 | } |
| 94 | } |
| 95 | return false; |
| 96 | } |
| 97 | |
| 98 | getPotentialMovesFrom([x, y]) { |
| 99 | // Pre-check: is thing on this square immobilized? |
| 100 | if (this.isImmobilized([x, y])) return []; |
| 101 | switch (this.getPiece(x, y)) { |
| 102 | case V.IMMOBILIZER: |
| 103 | return this.getPotentialImmobilizerMoves([x, y]); |
| 104 | default: |
| 105 | return super.getPotentialMovesFrom([x, y]); |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | getSlideNJumpMoves([x, y], steps, oneStep) { |
| 110 | const piece = this.getPiece(x, y); |
| 111 | let moves = []; |
| 112 | outerLoop: for (let step of steps) { |
| 113 | let i = x + step[0]; |
| 114 | let j = y + step[1]; |
| 115 | while (V.OnBoard(i, j) && this.board[i][j] == V.EMPTY) { |
| 116 | moves.push(this.getBasicMove([x, y], [i, j])); |
| 117 | if (oneStep !== undefined) continue outerLoop; |
| 118 | i += step[0]; |
| 119 | j += step[1]; |
| 120 | } |
| 121 | // Only king can take on occupied square: |
| 122 | if (piece == V.KING && V.OnBoard(i, j) && this.canTake([x, y], [i, j])) |
| 123 | moves.push(this.getBasicMove([x, y], [i, j])); |
| 124 | } |
| 125 | return moves; |
| 126 | } |
| 127 | |
| 128 | // Modify capturing moves among listed pawn moves |
| 129 | addPawnCaptures(moves, byChameleon) { |
| 130 | const steps = V.steps[V.ROOK]; |
| 131 | const color = this.turn; |
| 132 | const oppCol = V.GetOppCol(color); |
| 133 | moves.forEach(m => { |
| 134 | if (!!byChameleon && m.start.x != m.end.x && m.start.y != m.end.y) |
| 135 | // Chameleon not moving as pawn |
| 136 | return; |
| 137 | // Try capturing in every direction |
| 138 | for (let step of steps) { |
| 139 | const sq2 = [m.end.x + 2 * step[0], m.end.y + 2 * step[1]]; |
| 140 | if ( |
| 141 | V.OnBoard(sq2[0], sq2[1]) && |
| 142 | this.board[sq2[0]][sq2[1]] != V.EMPTY && |
| 143 | this.getColor(sq2[0], sq2[1]) == color |
| 144 | ) { |
| 145 | // Potential capture |
| 146 | const sq1 = [m.end.x + step[0], m.end.y + step[1]]; |
| 147 | if ( |
| 148 | this.board[sq1[0]][sq1[1]] != V.EMPTY && |
| 149 | this.getColor(sq1[0], sq1[1]) == oppCol |
| 150 | ) { |
| 151 | const piece1 = this.getPiece(sq1[0], sq1[1]); |
| 152 | if (!byChameleon || piece1 == V.PAWN) { |
| 153 | m.vanish.push( |
| 154 | new PiPo({ |
| 155 | x: sq1[0], |
| 156 | y: sq1[1], |
| 157 | c: oppCol, |
| 158 | p: piece1 |
| 159 | }) |
| 160 | ); |
| 161 | } |
| 162 | } |
| 163 | } |
| 164 | } |
| 165 | }); |
| 166 | } |
| 167 | |
| 168 | // "Pincer" |
| 169 | getPotentialPawnMoves([x, y]) { |
| 170 | let moves = super.getPotentialRookMoves([x, y]); |
| 171 | this.addPawnCaptures(moves); |
| 172 | return moves; |
| 173 | } |
| 174 | |
| 175 | addRookCaptures(moves, byChameleon) { |
| 176 | const color = this.turn; |
| 177 | const oppCol = V.GetOppCol(color); |
| 178 | const kp = this.kingPos[color]; |
| 179 | moves.forEach(m => { |
| 180 | // Check piece-king rectangle (if any) corners for enemy pieces |
| 181 | if (m.end.x == kp[0] || m.end.y == kp[1]) return; //"flat rectangle" |
| 182 | const corner1 = [m.end.x, kp[1]]; |
| 183 | const corner2 = [kp[0], m.end.y]; |
| 184 | for (let [i, j] of [corner1, corner2]) { |
| 185 | if (this.board[i][j] != V.EMPTY && this.getColor(i, j) == oppCol) { |
| 186 | const piece = this.getPiece(i, j); |
| 187 | if (!byChameleon || piece == V.ROOK) { |
| 188 | m.vanish.push( |
| 189 | new PiPo({ |
| 190 | x: i, |
| 191 | y: j, |
| 192 | p: piece, |
| 193 | c: oppCol |
| 194 | }) |
| 195 | ); |
| 196 | } |
| 197 | } |
| 198 | } |
| 199 | }); |
| 200 | } |
| 201 | |
| 202 | // Coordinator |
| 203 | getPotentialRookMoves(sq) { |
| 204 | let moves = super.getPotentialQueenMoves(sq); |
| 205 | this.addRookCaptures(moves); |
| 206 | return moves; |
| 207 | } |
| 208 | |
| 209 | getKnightCaptures(startSquare, byChameleon) { |
| 210 | // Look in every direction for captures |
| 211 | const steps = V.steps[V.ROOK].concat(V.steps[V.BISHOP]); |
| 212 | const color = this.turn; |
| 213 | const oppCol = V.GetOppCol(color); |
| 214 | let moves = []; |
| 215 | const [x, y] = [startSquare[0], startSquare[1]]; |
| 216 | const piece = this.getPiece(x, y); //might be a chameleon! |
| 217 | outerLoop: for (let step of steps) { |
| 218 | let [i, j] = [x + step[0], y + step[1]]; |
| 219 | while (V.OnBoard(i, j) && this.board[i][j] == V.EMPTY) { |
| 220 | i += step[0]; |
| 221 | j += step[1]; |
| 222 | } |
| 223 | if ( |
| 224 | !V.OnBoard(i, j) || |
| 225 | this.getColor(i, j) == color || |
| 226 | (!!byChameleon && this.getPiece(i, j) != V.KNIGHT) |
| 227 | ) { |
| 228 | continue; |
| 229 | } |
| 230 | // last(thing), cur(thing) : stop if "cur" is our color, |
| 231 | // or beyond board limits, or if "last" isn't empty and cur neither. |
| 232 | // Otherwise, if cur is empty then add move until cur square; |
| 233 | // if cur is occupied then stop if !!byChameleon and the square not |
| 234 | // occupied by a leaper. |
| 235 | let last = [i, j]; |
| 236 | let cur = [i + step[0], j + step[1]]; |
| 237 | let vanished = [new PiPo({ x: x, y: y, c: color, p: piece })]; |
| 238 | while (V.OnBoard(cur[0], cur[1])) { |
| 239 | if (this.board[last[0]][last[1]] != V.EMPTY) { |
| 240 | const oppPiece = this.getPiece(last[0], last[1]); |
| 241 | if (!!byChameleon && oppPiece != V.KNIGHT) continue outerLoop; |
| 242 | // Something to eat: |
| 243 | vanished.push( |
| 244 | new PiPo({ x: last[0], y: last[1], c: oppCol, p: oppPiece }) |
| 245 | ); |
| 246 | } |
| 247 | if (this.board[cur[0]][cur[1]] != V.EMPTY) { |
| 248 | if ( |
| 249 | this.getColor(cur[0], cur[1]) == color || |
| 250 | this.board[last[0]][last[1]] != V.EMPTY |
| 251 | ) { |
| 252 | //TODO: redundant test |
| 253 | continue outerLoop; |
| 254 | } |
| 255 | } else { |
| 256 | moves.push( |
| 257 | new Move({ |
| 258 | appear: [new PiPo({ x: cur[0], y: cur[1], c: color, p: piece })], |
| 259 | vanish: JSON.parse(JSON.stringify(vanished)), //TODO: required? |
| 260 | start: { x: x, y: y }, |
| 261 | end: { x: cur[0], y: cur[1] } |
| 262 | }) |
| 263 | ); |
| 264 | } |
| 265 | last = [last[0] + step[0], last[1] + step[1]]; |
| 266 | cur = [cur[0] + step[0], cur[1] + step[1]]; |
| 267 | } |
| 268 | } |
| 269 | return moves; |
| 270 | } |
| 271 | |
| 272 | // Long-leaper |
| 273 | getPotentialKnightMoves(sq) { |
| 274 | return super.getPotentialQueenMoves(sq).concat(this.getKnightCaptures(sq)); |
| 275 | } |
| 276 | |
| 277 | // Chameleon |
| 278 | getPotentialBishopMoves([x, y]) { |
| 279 | let moves = super |
| 280 | .getPotentialQueenMoves([x, y]) |
| 281 | .concat(this.getKnightCaptures([x, y], "asChameleon")); |
| 282 | // No "king capture" because king cannot remain under check |
| 283 | this.addPawnCaptures(moves, "asChameleon"); |
| 284 | this.addRookCaptures(moves, "asChameleon"); |
| 285 | this.addQueenCaptures(moves, "asChameleon"); |
| 286 | // Post-processing: merge similar moves, concatenating vanish arrays |
| 287 | let mergedMoves = {}; |
| 288 | moves.forEach(m => { |
| 289 | const key = m.end.x + V.size.x * m.end.y; |
| 290 | if (!mergedMoves[key]) mergedMoves[key] = m; |
| 291 | else { |
| 292 | for (let i = 1; i < m.vanish.length; i++) |
| 293 | mergedMoves[key].vanish.push(m.vanish[i]); |
| 294 | } |
| 295 | }); |
| 296 | return Object.values(mergedMoves); |
| 297 | } |
| 298 | |
| 299 | addQueenCaptures(moves, byChameleon) { |
| 300 | if (moves.length == 0) return; |
| 301 | const [x, y] = [moves[0].start.x, moves[0].start.y]; |
| 302 | const adjacentSteps = V.steps[V.ROOK].concat(V.steps[V.BISHOP]); |
| 303 | let capturingDirections = []; |
| 304 | const color = this.turn; |
| 305 | const oppCol = V.GetOppCol(color); |
| 306 | adjacentSteps.forEach(step => { |
| 307 | const [i, j] = [x + step[0], y + step[1]]; |
| 308 | if ( |
| 309 | V.OnBoard(i, j) && |
| 310 | this.board[i][j] != V.EMPTY && |
| 311 | this.getColor(i, j) == oppCol && |
| 312 | (!byChameleon || this.getPiece(i, j) == V.QUEEN) |
| 313 | ) { |
| 314 | capturingDirections.push(step); |
| 315 | } |
| 316 | }); |
| 317 | moves.forEach(m => { |
| 318 | const step = [ |
| 319 | m.end.x != x ? (m.end.x - x) / Math.abs(m.end.x - x) : 0, |
| 320 | m.end.y != y ? (m.end.y - y) / Math.abs(m.end.y - y) : 0 |
| 321 | ]; |
| 322 | // NOTE: includes() and even _.isEqual() functions fail... |
| 323 | // TODO: this test should be done only once per direction |
| 324 | if ( |
| 325 | capturingDirections.some(dir => { |
| 326 | return dir[0] == -step[0] && dir[1] == -step[1]; |
| 327 | }) |
| 328 | ) { |
| 329 | const [i, j] = [x - step[0], y - step[1]]; |
| 330 | m.vanish.push( |
| 331 | new PiPo({ |
| 332 | x: i, |
| 333 | y: j, |
| 334 | p: this.getPiece(i, j), |
| 335 | c: oppCol |
| 336 | }) |
| 337 | ); |
| 338 | } |
| 339 | }); |
| 340 | } |
| 341 | |
| 342 | // Withdrawer |
| 343 | getPotentialQueenMoves(sq) { |
| 344 | let moves = super.getPotentialQueenMoves(sq); |
| 345 | this.addQueenCaptures(moves); |
| 346 | return moves; |
| 347 | } |
| 348 | |
| 349 | getPotentialImmobilizerMoves(sq) { |
| 350 | // Immobilizer doesn't capture |
| 351 | return super.getPotentialQueenMoves(sq); |
| 352 | } |
| 353 | |
| 354 | // isAttacked() is OK because the immobilizer doesn't take |
| 355 | |
| 356 | isAttackedByPawn([x, y], color) { |
| 357 | // Square (x,y) must be surroundable by two enemy pieces, |
| 358 | // and one of them at least should be a pawn (moving). |
| 359 | const dirs = [ |
| 360 | [1, 0], |
| 361 | [0, 1] |
| 362 | ]; |
| 363 | const steps = V.steps[V.ROOK]; |
| 364 | for (let dir of dirs) { |
| 365 | const [i1, j1] = [x - dir[0], y - dir[1]]; //"before" |
| 366 | const [i2, j2] = [x + dir[0], y + dir[1]]; //"after" |
| 367 | if (V.OnBoard(i1, j1) && V.OnBoard(i2, j2)) { |
| 368 | if ( |
| 369 | ( |
| 370 | this.board[i1][j1] != V.EMPTY && |
| 371 | this.getColor(i1, j1) == color && |
| 372 | this.board[i2][j2] == V.EMPTY |
| 373 | ) |
| 374 | || |
| 375 | ( |
| 376 | this.board[i2][j2] != V.EMPTY && |
| 377 | this.getColor(i2, j2) == color && |
| 378 | this.board[i1][j1] == V.EMPTY |
| 379 | ) |
| 380 | ) { |
| 381 | // Search a movable enemy pawn landing on the empty square |
| 382 | for (let step of steps) { |
| 383 | let [ii, jj] = this.board[i1][j1] == V.EMPTY ? [i1, j1] : [i2, j2]; |
| 384 | let [i3, j3] = [ii + step[0], jj + step[1]]; |
| 385 | while (V.OnBoard(i3, j3) && this.board[i3][j3] == V.EMPTY) { |
| 386 | i3 += step[0]; |
| 387 | j3 += step[1]; |
| 388 | } |
| 389 | if ( |
| 390 | V.OnBoard(i3, j3) && |
| 391 | this.getColor(i3, j3) == color && |
| 392 | this.getPiece(i3, j3) == V.PAWN && |
| 393 | !this.isImmobilized([i3, j3]) |
| 394 | ) { |
| 395 | return true; |
| 396 | } |
| 397 | } |
| 398 | } |
| 399 | } |
| 400 | } |
| 401 | return false; |
| 402 | } |
| 403 | |
| 404 | isAttackedByRook([x, y], color) { |
| 405 | // King must be on same column or row, |
| 406 | // and a rook should be able to reach a capturing square |
| 407 | const sameRow = x == this.kingPos[color][0]; |
| 408 | const sameColumn = y == this.kingPos[color][1]; |
| 409 | if (sameRow || sameColumn) { |
| 410 | // Look for the enemy rook (maximum 1) |
| 411 | for (let i = 0; i < V.size.x; i++) { |
| 412 | for (let j = 0; j < V.size.y; j++) { |
| 413 | if ( |
| 414 | this.board[i][j] != V.EMPTY && |
| 415 | this.getColor(i, j) == color && |
| 416 | this.getPiece(i, j) == V.ROOK |
| 417 | ) { |
| 418 | if (this.isImmobilized([i, j])) |
| 419 | // Because only one rook: |
| 420 | return false; |
| 421 | // Can it reach a capturing square? Easy but quite suboptimal way |
| 422 | // (TODO: generate all moves (turn is OK)) |
| 423 | const moves = this.getPotentialMovesFrom([i, j]); |
| 424 | for (let move of moves) { |
| 425 | if ( |
| 426 | (sameRow && move.end.y == y) || |
| 427 | (sameColumn && move.end.x == x) |
| 428 | ) { |
| 429 | return true; |
| 430 | } |
| 431 | } |
| 432 | } |
| 433 | } |
| 434 | } |
| 435 | } |
| 436 | return false; |
| 437 | } |
| 438 | |
| 439 | isAttackedByKnight([x, y], color) { |
| 440 | // Square (x,y) must be on same line as a knight, |
| 441 | // and there must be empty square(s) behind. |
| 442 | const steps = V.steps[V.ROOK].concat(V.steps[V.BISHOP]); |
| 443 | outerLoop: for (let step of steps) { |
| 444 | const [i0, j0] = [x + step[0], y + step[1]]; |
| 445 | if (V.OnBoard(i0, j0) && this.board[i0][j0] == V.EMPTY) { |
| 446 | // Try in opposite direction: |
| 447 | let [i, j] = [x - step[0], y - step[1]]; |
| 448 | while (V.OnBoard(i, j)) { |
| 449 | while (V.OnBoard(i, j) && this.board[i][j] == V.EMPTY) { |
| 450 | i -= step[0]; |
| 451 | j -= step[1]; |
| 452 | } |
| 453 | if (V.OnBoard(i, j)) { |
| 454 | if (this.getColor(i, j) == color) { |
| 455 | if ( |
| 456 | this.getPiece(i, j) == V.KNIGHT && |
| 457 | !this.isImmobilized([i, j]) |
| 458 | ) { |
| 459 | return true; |
| 460 | } |
| 461 | continue outerLoop; |
| 462 | } |
| 463 | // [else] Our color, |
| 464 | // could be captured *if there was an empty space* |
| 465 | if (this.board[i + step[0]][j + step[1]] != V.EMPTY) |
| 466 | continue outerLoop; |
| 467 | i -= step[0]; |
| 468 | j -= step[1]; |
| 469 | } |
| 470 | } |
| 471 | } |
| 472 | } |
| 473 | return false; |
| 474 | } |
| 475 | |
| 476 | isAttackedByBishop([x, y], color) { |
| 477 | // We cheat a little here: since this function is used exclusively for |
| 478 | // the king, it's enough to check the immediate surrounding of the square. |
| 479 | const adjacentSteps = V.steps[V.ROOK].concat(V.steps[V.BISHOP]); |
| 480 | for (let step of adjacentSteps) { |
| 481 | const [i, j] = [x + step[0], y + step[1]]; |
| 482 | if ( |
| 483 | V.OnBoard(i, j) && |
| 484 | this.board[i][j] != V.EMPTY && |
| 485 | this.getColor(i, j) == color && |
| 486 | this.getPiece(i, j) == V.BISHOP && |
| 487 | !this.isImmobilized([i, j]) |
| 488 | ) { |
| 489 | return true; |
| 490 | } |
| 491 | } |
| 492 | return false; |
| 493 | } |
| 494 | |
| 495 | isAttackedByQueen([x, y], color) { |
| 496 | // Square (x,y) must be adjacent to a queen, and the queen must have |
| 497 | // some free space in the opposite direction from (x,y) |
| 498 | const adjacentSteps = V.steps[V.ROOK].concat(V.steps[V.BISHOP]); |
| 499 | for (let step of adjacentSteps) { |
| 500 | const sq2 = [x + 2 * step[0], y + 2 * step[1]]; |
| 501 | if (V.OnBoard(sq2[0], sq2[1]) && this.board[sq2[0]][sq2[1]] == V.EMPTY) { |
| 502 | const sq1 = [x + step[0], y + step[1]]; |
| 503 | if ( |
| 504 | this.board[sq1[0]][sq1[1]] != V.EMPTY && |
| 505 | this.getColor(sq1[0], sq1[1]) == color && |
| 506 | this.getPiece(sq1[0], sq1[1]) == V.QUEEN && |
| 507 | !this.isImmobilized(sq1) |
| 508 | ) { |
| 509 | return true; |
| 510 | } |
| 511 | } |
| 512 | } |
| 513 | return false; |
| 514 | } |
| 515 | |
| 516 | isAttackedByKing([x, y], color) { |
| 517 | const steps = V.steps[V.ROOK].concat(V.steps[V.BISHOP]); |
| 518 | for (let step of steps) { |
| 519 | let rx = x + step[0], |
| 520 | ry = y + step[1]; |
| 521 | if ( |
| 522 | V.OnBoard(rx, ry) && |
| 523 | this.getPiece(rx, ry) === V.KING && |
| 524 | this.getColor(rx, ry) == color && |
| 525 | !this.isImmobilized([rx, ry]) |
| 526 | ) { |
| 527 | return true; |
| 528 | } |
| 529 | } |
| 530 | return false; |
| 531 | } |
| 532 | |
| 533 | static GenRandInitFen(randomness) { |
| 534 | if (randomness == 0) |
| 535 | // Deterministic: |
| 536 | return "rnbkqbnm/pppppppp/8/8/8/8/PPPPPPPP/MNBQKBNR w 0"; |
| 537 | |
| 538 | let pieces = { w: new Array(8), b: new Array(8) }; |
| 539 | // Shuffle pieces on first and last rank |
| 540 | for (let c of ["w", "b"]) { |
| 541 | if (c == 'b' && randomness == 1) { |
| 542 | pieces['b'] = pieces['w']; |
| 543 | break; |
| 544 | } |
| 545 | |
| 546 | // Get random squares for every piece, totally freely |
| 547 | let positions = shuffle(ArrayFun.range(8)); |
| 548 | const composition = ['r', 'n', 'b', 'q', 'k', 'b', 'n', 'm']; |
| 549 | for (let i = 0; i < 8; i++) pieces[c][positions[i]] = composition[i]; |
| 550 | } |
| 551 | return ( |
| 552 | pieces["b"].join("") + |
| 553 | "/pppppppp/8/8/8/8/PPPPPPPP/" + |
| 554 | pieces["w"].join("").toUpperCase() + |
| 555 | " w 0" |
| 556 | ); |
| 557 | } |
| 558 | |
| 559 | static get VALUES() { |
| 560 | return { |
| 561 | p: 1, |
| 562 | r: 2, |
| 563 | n: 5, |
| 564 | b: 3, |
| 565 | q: 3, |
| 566 | m: 5, |
| 567 | k: 1000 |
| 568 | }; |
| 569 | } |
| 570 | |
| 571 | static get SEARCH_DEPTH() { |
| 572 | return 2; |
| 573 | } |
| 574 | |
| 575 | getNotation(move) { |
| 576 | const initialSquare = V.CoordsToSquare(move.start); |
| 577 | const finalSquare = V.CoordsToSquare(move.end); |
| 578 | let notation = undefined; |
| 579 | if (move.appear[0].p == V.PAWN) { |
| 580 | // Pawn: generally ambiguous short notation, so we use full description |
| 581 | notation = "P" + initialSquare + finalSquare; |
| 582 | } else if (move.appear[0].p == V.KING) |
| 583 | notation = "K" + (move.vanish.length > 1 ? "x" : "") + finalSquare; |
| 584 | else notation = move.appear[0].p.toUpperCase() + finalSquare; |
| 585 | // Add a capture mark (not describing what is captured...): |
| 586 | if (move.vanish.length > 1 && move.appear[0].p != V.KING) notation += "X"; |
| 587 | return notation; |
| 588 | } |
| 589 | }; |