Add 'fast' argument to select C code or R code
[valse.git] / pkg / R / EMGLLF.R
index 5484706..0158914 100644 (file)
 #'
 #' @export
 EMGLLF <- function(phiInit, rhoInit, piInit, gamInit,
-       mini, maxi, gamma, lambda, X, Y, tau)
+       mini, maxi, gamma, lambda, X, Y, tau, fast=TRUE)
 {
-       #TEMPORARY: use R version
-       return (EMGLLF_R(phiInit, rhoInit, piInit, gamInit,mini, maxi, gamma, lambda, X, Y, tau))
+       if (!fast)
+       {
+               # Function in R
+               return (EMGLLF_R(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,lambda,X,Y,tau))
+       }
 
+       # Function in C
        n = nrow(X) #nombre d'echantillons
        p = ncol(X) #nombre de covariables
        m = ncol(Y) #taille de Y (multivarié)
@@ -39,3 +43,148 @@ EMGLLF <- function(phiInit, rhoInit, piInit, gamInit,
                n, p, m, k,
                PACKAGE="valse")
 }
+
+# R version - slow but easy to read
+EMGLLF_R = function(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,lambda,X,Y,tau)
+{
+       # Matrix dimensions
+       n = dim(X)[1]
+       p = dim(phiInit)[1]
+       m = dim(phiInit)[2]
+       k = dim(phiInit)[3]
+
+       # Outputs
+       phi = phiInit
+       rho = rhoInit
+       pi = piInit
+       llh = -Inf
+       S = array(0, dim=c(p,m,k))
+
+       # Algorithm variables
+       gam = gamInit
+       Gram2 = array(0, dim=c(p,p,k))
+       ps2 = array(0, dim=c(p,m,k))
+       X2 = array(0, dim=c(n,p,k))
+       Y2 = array(0, dim=c(n,m,k))
+       EPS = 1e-15
+
+       for (ite in 1:maxi)
+       {
+               # Remember last pi,rho,phi values for exit condition in the end of loop
+               Phi = phi
+               Rho = rho
+               Pi = pi
+
+               # Calcul associé à Y et X
+               for (r in 1:k)
+               {
+                       for (mm in 1:m)
+                               Y2[,mm,r] = sqrt(gam[,r]) * Y[,mm]
+                       for (i in 1:n)
+                               X2[i,,r] = sqrt(gam[i,r]) * X[i,]
+                       for (mm in 1:m)
+                               ps2[,mm,r] = crossprod(X2[,,r],Y2[,mm,r])
+                       for (j in 1:p)
+                       {
+                               for (s in 1:p)
+                                       Gram2[j,s,r] = crossprod(X2[,j,r], X2[,s,r])
+                       }
+               }
+
+               ##########
+               #Etape M #
+               ##########
+
+               # Pour pi
+               b = sapply( 1:k, function(r) sum(abs(phi[,,r])) )
+               gam2 = colSums(gam)
+               a = sum(gam %*% log(pi))
+
+               # Tant que les props sont negatives
+               kk = 0
+               pi2AllPositive = FALSE
+               while (!pi2AllPositive)
+               {
+                       pi2 = pi + 0.1^kk * ((1/n)*gam2 - pi)
+                       pi2AllPositive = all(pi2 >= 0)
+                       kk = kk+1
+               }
+
+               # t(m) la plus grande valeur dans la grille O.1^k tel que ce soit décroissante ou constante
+               while( kk < 1000 && -a/n + lambda * sum(pi^gamma * b) <
+                       -sum(gam2 * log(pi2))/n + lambda * sum(pi2^gamma * b) )
+               {
+                       pi2 = pi + 0.1^kk * (1/n*gam2 - pi)
+                       kk = kk + 1
+               }
+               t = 0.1^kk
+               pi = (pi + t*(pi2-pi)) / sum(pi + t*(pi2-pi))
+
+               #Pour phi et rho
+               for (r in 1:k)
+               {
+                       for (mm in 1:m)
+                       {
+                               ps = 0
+                               for (i in 1:n)
+                                       ps = ps + Y2[i,mm,r] * sum(X2[i,,r] * phi[,mm,r])
+                               nY2 = sum(Y2[,mm,r]^2)
+                               rho[mm,mm,r] = (ps+sqrt(ps^2+4*nY2*gam2[r])) / (2*nY2)
+                       }
+               }
+
+               for (r in 1:k)
+               {
+                       for (j in 1:p)
+                       {
+                               for (mm in 1:m)
+                               {
+                                       S[j,mm,r] = -rho[mm,mm,r]*ps2[j,mm,r] + sum(phi[-j,mm,r] * Gram2[j,-j,r])
+                                       if (abs(S[j,mm,r]) <= n*lambda*(pi[r]^gamma))
+                                               phi[j,mm,r]=0
+                                       else if(S[j,mm,r] > n*lambda*(pi[r]^gamma))
+                                               phi[j,mm,r] = (n*lambda*(pi[r]^gamma)-S[j,mm,r]) / Gram2[j,j,r]
+                                       else
+                                               phi[j,mm,r] = -(n*lambda*(pi[r]^gamma)+S[j,mm,r]) / Gram2[j,j,r]
+                               }
+                       }
+               }
+
+               ##########
+               #Etape E #
+               ##########
+
+               # Precompute det(rho[,,r]) for r in 1...k
+               detRho = sapply(1:k, function(r) det(rho[,,r]))
+
+               sumLogLLH = 0
+               for (i in 1:n)
+               {
+                       # Update gam[,]
+                       sumGamI = 0
+                       for (r in 1:k)
+                       {
+                               gam[i,r] = pi[r]*exp(-0.5*sum((Y[i,]%*%rho[,,r]-X[i,]%*%phi[,,r])^2))*detRho[r]
+                               sumGamI = sumGamI + gam[i,r]
+                       }
+                       sumLogLLH = sumLogLLH + log(sumGamI) - log((2*base::pi)^(m/2))
+                       if (sumGamI > EPS) #else: gam[i,] is already ~=0
+                               gam[i,] = gam[i,] / sumGamI
+               }
+
+               sumPen = sum(pi^gamma * b)
+               last_llh = llh
+               llh = -sumLogLLH/n + lambda*sumPen
+               dist = ifelse( ite == 1, llh, (llh-last_llh) / (1+abs(llh)) )
+               Dist1 = max( (abs(phi-Phi)) / (1+abs(phi)) )
+               Dist2 = max( (abs(rho-Rho)) / (1+abs(rho)) )
+               Dist3 = max( (abs(pi-Pi)) / (1+abs(Pi)) )
+               dist2 = max(Dist1,Dist2,Dist3)
+
+               if (ite >= mini && (dist >= tau || dist2 >= sqrt(tau)))
+                       break
+       }
+
+       affec = apply(gam, 1, which.max)
+       list( "phi"=phi, "rho"=rho, "pi"=pi, "llh"=llh, "S"=S, "affec"=affec )
+}