'update'
[talweg.git] / pkg / R / plot.R
index 95dc0f7..0f895bd 100644 (file)
 #' Plot curves
 #'
-#' Plot a range of curves in data
+#' Plot a range of curves in data.
 #'
-#' @param data Object of class Data
+#' @inheritParams computeError
 #' @param indices Range of indices (integers or dates)
 #'
 #' @export
 plotCurves <- function(data, indices=seq_len(data$getSize()))
 {
        series = data$getSeries(indices)
-       yrange = quantile(series, probs=c(0.05,0.95), na.rm=TRUE)
+       yrange = quantile(series, probs=c(0.025,0.975), na.rm=TRUE)
        par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
-       for (i in seq_along(indices))
-       {
-               plot(series[,i], type="l", ylim=yrange,
-                       xlab=ifelse(i==1,"Temps (en heures)",""), ylab=ifelse(i==1,"PM10",""))
-               if (i < length(indices))
-                       par(new=TRUE)
-       }
+       matplot(series, type="l", ylim=yrange, xlab="Time (hours)", ylab="PM10")
 }
 
 #' Plot error
 #'
-#' Draw error graphs, potentially from several runs of \code{computeForecast}
+#' Draw error graphs, potentially from several runs of \code{computeForecast()}.
 #'
-#' @param err Error as returned by \code{computeError}
+#' @param err Error as returned by \code{computeError()}
 #' @param cols Colors for each error (default: 1,2,3,...)
+#' @param agg Aggregation level ("day", "week" or "month")
 #'
 #' @seealso \code{\link{plotCurves}}, \code{\link{plotPredReal}},
-#'   \code{\link{plotSimils}}, \code{\link{plotFbox}},
-#'   \code{\link{computeFilaments}, }\code{\link{plotFilamentsBox}}, \code{\link{plotRelVar}}
+#'   \code{\link{plotSimils}}, \code{\link{plotFbox}}, \code{\link{computeFilaments}},
+#'   \code{\link{plotFilamentsBox}}, \code{\link{plotRelVar}}
 #'
 #' @export
-plotError <- function(err, cols=seq_along(err))
+plotError <- function(err, cols=seq_along(err), agg="day")
 {
        if (!is.null(err$abs))
                err = list(err)
-       par(mfrow=c(2,2), mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=2)
+       par(mfrow=c(2,2), mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
        L = length(err)
-       yrange = range( sapply(1:L, function(i) ( err[[i]]$abs$day ) ), na.rm=TRUE )
-       for (i in seq_len(L))
-       {
-               plot(err[[i]]$abs$day, type="l", xlab=ifelse(i==1,"Temps (heures)",""),
-                       ylab=ifelse(i==1,"Moyenne |y - y_hat|",""), ylim=yrange, col=cols[i])
-               if (i < L)
-                       par(new=TRUE)
-       }
-       yrange = range( sapply(1:L, function(i) ( err[[i]]$abs$indices ) ), na.rm=TRUE )
-       for (i in seq_len(L))
-       {
-               plot(err[[i]]$abs$indices, type="l", xlab=ifelse(i==1,"Temps (jours)",""),
-                       ylab=ifelse(i==1,"Moyenne |y - y_hat|",""), ylim=yrange, col=cols[i])
-               if (i < L)
-                       par(new=TRUE)
-       }
-       yrange = range( sapply(1:L, function(i) ( err[[i]]$MAPE$day ) ), na.rm=TRUE )
-       for (i in seq_len(L))
-       {
-               plot(err[[i]]$MAPE$day, type="l", xlab=ifelse(i==1,"Temps (heures)",""),
-                       ylab=ifelse(i==1,"MAPE moyen",""), ylim=yrange, col=cols[i])
-               if (i < L)
-                       par(new=TRUE)
-       }
-       yrange = range( sapply(1:L, function(i) ( err[[i]]$MAPE$indices ) ), na.rm=TRUE )
-       for (i in seq_len(L))
-       {
-               plot(err[[i]]$MAPE$indices, type="l", xlab=ifelse(i==1,"Temps (jours)",""),
-                       ylab=ifelse(i==1,"MAPE moyen",""), ylim=yrange, col=cols[i])
-               if (i < L)
-                       par(new=TRUE)
-       }
+
+       yrange = range( sapply(1:L, function(i) err[[i]]$abs$day), na.rm=TRUE )
+       matplot(sapply( seq_len(L), function(i) err[[i]]$abs$day ), type="l",
+               xlab="Time (hours)", ylab="Mean |y - y_hat|", ylim=yrange, col=cols, lwd=2, lty=1)
+
+       agg_curves <- sapply( seq_len(L), function(i) {
+               curve <- err[[i]]$abs$indices
+               delta <- if (agg=="day") 1 else if (agg=="week") 7 else if (agg=="month") 30
+               vapply( seq(1,length(curve),delta), function(i) {
+                       mean(curve[i:(i+delta-1)], na.rm=TRUE)
+               }, vector("double",1), USE.NAMES=FALSE )
+       })
+       yrange = range(agg_curves, na.rm=TRUE)
+       matplot(agg_curves, type="l", xlab=paste("Time (",agg,"s)", sep=""),
+               ylab="Mean |y - y_hat|", ylim=yrange, col=cols, lwd=2, lty=1)
+
+       yrange = range( sapply(1:L, function(i) err[[i]]$MAPE$day), na.rm=TRUE )
+       matplot(sapply( seq_len(L), function(i) err[[i]]$MAPE$day ), type="l",
+               xlab="Time (hours)", ylab="Mean MAPE", ylim=yrange, col=cols, lwd=2, lty=1)
+
+       agg_curves <- sapply( seq_len(L), function(i) {
+               curve <- err[[i]]$MAPE$indices
+               delta <- if (agg=="day") 1 else if (agg=="week") 7 else if (agg=="month") 30
+               vapply( seq(1,length(curve),delta), function(i) {
+                       mean(curve[i:(i+delta-1)], na.rm=TRUE)
+               }, vector("double",1), USE.NAMES=FALSE )
+       })
+       yrange = range(agg_curves, na.rm=TRUE)
+       matplot(agg_curves, type="l", xlab=paste("Time (",agg,"s)", sep=""),
+               ylab="Mean MAPE", ylim=yrange, col=cols, lwd=2, lty=1)
 }
 
 #' Plot measured / predicted
 #'
-#' Plot measured curve (in black) and predicted curve (in blue)
+#' Plot measured curve (in black) and predicted curve (in blue).
 #'
-#' @param data Object return by \code{getData}
-#' @param pred Object as returned by \code{computeForecast}
+#' @inheritParams computeError
 #' @param index Index in forecasts (integer or date)
 #'
 #' @export
 plotPredReal <- function(data, pred, index)
 {
-       horizon = length(pred$getSerie(1))
-       measure = data$getSerie( pred$getIndexInData(index)+1 )[1:horizon]
-       prediction = pred$getSerie(index)
+       prediction = pred$getForecast(index)
+       measure = data$getSerie( pred$getIndexInData(index) )[1:length(pred$getForecast(1))]
+
+       # Remove the common part, where prediction == measure
+       dot_mark <- ifelse(prediction[1]==measure[1],
+               which.max(seq_along(prediction)[prediction==measure]), 0)
+       prediction = prediction[(dot_mark+1):length(prediction)]
+       measure = measure[(dot_mark+1):length(measure)]
+
        yrange = range(measure, prediction)
        par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=3)
-       plot(measure, type="l", ylim=yrange, xlab="Temps (en heures)", ylab="PM10")
+       plot(measure, type="l", ylim=yrange, xlab="Time (hours)", ylab="PM10")
        par(new=TRUE)
        plot(prediction, type="l", col="#0000FF", ylim=yrange, xlab="", ylab="")
 }
 
 #' Plot similarities
 #'
-#' Plot histogram of similarities (weights)
+#' Plot histogram of similarities (weights), for 'Neighbors' method.
 #'
-#' @param pred Object as returned by \code{computeForecast}
+#' @inheritParams computeError
 #' @param index Index in forecasts (integer or date)
 #'
 #' @export
@@ -106,17 +104,19 @@ plotSimils <- function(pred, index)
        weights = pred$getParams(index)$weights
        if (is.null(weights))
                stop("plotSimils only works on 'Neighbors' forecasts")
-       par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
-       hist(pred$getParams(index)$weights, nclass=20, xlab="Poids", ylab="Effectif")
+       par(mfrow=c(1,2), mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
+       small_weights = weights[ weights < 1/length(weights) ]
+       large_weights = weights[ weights >= 1/length(weights) ]
+       hist(small_weights, nclass=25, main="", xlab="Weight < 1/N", ylab="Count")
+       hist(large_weights, nclass=25, main="", xlab="Weight >= 1/N", ylab="Count")
 }
 
 #' Functional boxplot
 #'
-#' Draw the functional boxplot on the left, and bivariate plot on the right
+#' Draw the functional boxplot on the left, and bivariate plot on the right.
 #'
-#' @param data Object return by \code{getData}
-#' @param indices integer or date indices to process
-#' @param plot_bivariate Should the bivariate plot appear?
+#' @inheritParams computeError
+#' @inheritParams plotCurves
 #'
 #' @export
 plotFbox <- function(data, indices=seq_len(data$getSize()))
@@ -132,17 +132,18 @@ plotFbox <- function(data, indices=seq_len(data$getSize()))
 
        series_fds = rainbow::fds(seq_len(nrow(series_matrix)), series_matrix)
        par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
-       rainbow::fboxplot(series_fds, "functional", "hdr", xlab="Temps (heures)", ylab="PM10",
+       rainbow::fboxplot(series_fds, "functional", "hdr", xlab="Time (hours)", ylab="PM10",
                plotlegend=FALSE, lwd=2)
        rainbow::fboxplot(series_fds, "bivariate", "hdr", plotlegend=FALSE)
 }
 
 #' Compute filaments
 #'
-#' Get similar days in the past, as black as distances are small
+#' Obtain similar days in the past, and (optionally) plot them -- as black as distances
+#' are small.
 #'
-#' @param data Object as returned by \code{getData}
-#' @param index Index in data (integer or date)
+#' @inheritParams computeError
+#' @param index Index in forecast (integer or date)
 #' @param limit Number of neighbors to consider
 #' @param plot Should the result be plotted?
 #'
@@ -154,99 +155,109 @@ plotFbox <- function(data, indices=seq_len(data$getSize()))
 #' }
 #'
 #' @export
-computeFilaments <- function(data, index, limit=60, plot=TRUE)
+computeFilaments <- function(data, pred, index, limit=60, plot=TRUE)
 {
-       ref_serie = data$getCenteredSerie(index)
-       if (any(is.na(ref_serie)))
+       weights <- pred$getParams(index)$weights
+       if (is.null(weights) || is.na(pred$getParams(index)$weights[1]))
                stop("computeFilaments requires a serie without NAs")
 
-       # Determine indices of no-NAs days followed by no-NAs tomorrows
-       fdays = getNoNA2(data, 1, dateIndexToInteger(index,data)-1)
-       # Series + tomorrows in columns, ref_serie first
-       centered_series = data$getCenteredSeries(fdays)
-
-       # Obtain neighbors (closest for euclidian norm)
-       L = length(ref_serie)
-       distances = sqrt( colSums( (centered_series - ref_serie)^2 / L ) )
-       sorted_distances = sort(distances, index.return=TRUE)
-
-       # Compute colors for each neighbor (from darkest to lightest)
-       nn = min(limit, length(distances))
-       min_dist = min(sorted_distances$x[1:nn])
-       max_dist = max(sorted_distances$x[1:nn])
-       color_values = floor( 19.5 * (sorted_distances$x[1:nn]-min_dist) / (max_dist-min_dist) ) + 1
-       colors = gray.colors(20,0.1,0.9)[color_values] #TODO: 20 == magic number
+       nn <- min(limit, length(weights))
+       sorted_dists = sort(-log(weights), index.return=TRUE)
+       # Compute colors for each neighbor (from darkest to lightest), if weights differ
+       if ( any( weights != weights[1] ) )
+       {
+               min_dist = min(sorted_dists$x[1:nn])
+               max_dist = max(sorted_dists$x[1:nn])
+               color_values = floor(19.5*(sorted_dists$x[1:nn]-min_dist)/(max_dist-min_dist)) + 1
+               colors = gray.colors(20,0.1,0.9)[color_values] #TODO: 20 == magic number
+       }
+       else
+               colors <- rep(colors()[17], length(weights))
 
        if (plot)
        {
                # Complete series with (past and present) tomorrows
-               ref_serie = c(ref_serie,data$getCenteredSerie(index+1))
-               centered_series = rbind( centered_series, data$getCenteredSeries(fdays+1) )
-               yrange = quantile(cbind(ref_serie,centered_series), probs=c(0.05,0.95), na.rm=TRUE)
+               ref_serie = c( data$getCenteredSerie( pred$getIndexInData(index)-1 ),
+                       data$getCenteredSerie( pred$getIndexInData(index) ) )
+               centered_series = rbind(
+                       data$getCenteredSeries( pred$getParams(index)$indices-1 ),
+                       data$getCenteredSeries( pred$getParams(index)$indices ) )
+               yrange = range( ref_serie,
+                       quantile(centered_series, probs=c(0.025,0.975), na.rm=TRUE) )
                par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=2)
                for (i in nn:1)
                {
-                       plot(centered_series[,sorted_distances$ix[i]], ylim=yrange, type="l", col=colors[i],
-                               xlab=ifelse(i==nn,"Temps (en heures)",""), ylab=ifelse(i==nn,"PM10 centrĂ©",""))
+                       plot(centered_series[,sorted_dists$ix[i]], ylim=yrange, type="l", col=colors[i],
+                               xlab=ifelse(i==1,"Time (hours)",""), ylab=ifelse(i==1,"Centered PM10",""))
                        par(new=TRUE)
                }
                # Also plot ref curve, in red
                plot(ref_serie, ylim=yrange, type="l", col="#FF0000", xlab="", ylab="")
-               abline(v=24, lty=2, col=colors()[56])
+               dot_mark <- 0.5 + which.max( pred$getForecast(1) ==
+                       data$getSerie( pred$getIndexInData(1) )[1:length(pred$getForecast(1))] )
+               abline(v=24+dot_mark, lty=2, col=colors()[56], lwd=1)
        }
 
-       list("index"=index,"neighb_indices"=fdays[sorted_distances$ix[1:nn]],"colors"=colors)
+       list(
+               "index"=pred$getIndexInData(index),
+               "neighb_indices"=pred$getParams(index)$indices[sorted_dists$ix[1:nn]],
+               "colors"=colors)
 }
 
 #' Functional boxplot on filaments
 #'
-#' Draw the functional boxplot on filaments obtained by \code{computeFilaments}
+#' Draw the functional boxplot on filaments obtained by \code{computeFilaments()}.
 #'
-#' @param data Object return by \code{getData}
+#' @inheritParams computeError
 #' @param fil Output of \code{computeFilaments}
+#' @param predict_from First predicted time step
 #'
 #' @export
-plotFilamentsBox = function(data, fil, ...)
+plotFilamentsBox = function(data, fil, predict_from)
 {
        if (!requireNamespace("rainbow", quietly=TRUE))
                stop("Functional boxplot requires the rainbow package")
 
        series_matrix = rbind(
-               data$getSeries(fil$neighb_indices), data$getSeries(fil$neighb_indices+1) )
+               data$getSeries(fil$neighb_indices-1), data$getSeries(fil$neighb_indices) )
        series_fds = rainbow::fds(seq_len(nrow(series_matrix)), series_matrix)
+
        par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
-       rainbow::fboxplot(series_fds, "functional", "hdr", xlab="Temps (heures)", ylab="PM10",
+       rainbow::fboxplot(series_fds, "functional", "hdr", xlab="Time (hours)", ylab="PM10",
                plotlegend=FALSE, lwd=2)
 
-       # "Magic" found at http://stackoverflow.com/questions/13842560/get-xlim-from-a-plot-in-r
+       # "Magic": http://stackoverflow.com/questions/13842560/get-xlim-from-a-plot-in-r
        usr <- par("usr")
        yr <- (usr[4] - usr[3]) / 27
        par(new=TRUE)
-       plot(data$getSerie(fil$index), type="l", lwd=2, lty=2,
+       plot(c(data$getSerie(fil$index-1),data$getSerie(fil$index)), type="l", lwd=2, lty=2,
                ylim=c(usr[3] + yr, usr[4] - yr), xlab="", ylab="")
+       abline(v=24+predict_from-0.5, lty=2, col=colors()[56])
 }
 
 #' Plot relative conditional variability / absolute variability
 #'
 #' Draw the relative conditional variability / absolute variability based on filaments
-#' obtained by \code{computeFilaments}
+#' obtained by \code{computeFilaments()}.
 #'
-#' @param data Object return by \code{getData}
-#' @param fil Output of \code{computeFilaments}
+#' @inheritParams computeError
+#' @inheritParams plotFilamentsBox
 #'
 #' @export
-plotRelVar = function(data, fil, ...)
+plotRelVar = function(data, fil, predict_from)
 {
-       ref_var = c( apply(data$getSeries(fil$neighb_indices),1,sd),
-               apply(data$getSeries(fil$neighb_indices+1),1,sd) )
-       fdays = getNoNA2(data, 1, fil$index-1)
-       global_var = c( apply(data$getSeries(fdays),1,sd), apply(data$getSeries(fdays+1),1,sd) )
+       ref_var = c( apply(data$getSeries(fil$neighb_indices-1),1,sd),
+               apply(data$getSeries(fil$neighb_indices),1,sd) )
+       tdays = .getNoNA2(data, 2, fil$index)
+       global_var = c(
+               apply(data$getSeries(tdays-1),1,sd),
+               apply(data$getSeries(tdays),1,sd) )
 
        yrange = range(ref_var, global_var)
        par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
        plot(ref_var, type="l", col=1, lwd=3, ylim=yrange,
-               xlab="Temps (heures)", ylab="Écart-type")
+               xlab="Time (hours)", ylab="Standard deviation")
        par(new=TRUE)
        plot(global_var, type="l", col=2, lwd=3, ylim=yrange, xlab="", ylab="")
-       abline(v=24, lty=2, col=colors()[56])
+       abline(v=24+predict_from-0.5, lty=2, col=colors()[56])
 }