60eb7b791835c5197c8921c5336d5709c517a773
[talweg.git] / pkg / R / F_Neighbors.R
1 #' Neighbors Forecaster
2 #'
3 #' Predict next serie as a weighted combination of "futures of the past" days,
4 #' where days in the past are chosen and weighted according to some similarity measures.
5 #'
6 #' The main method is \code{predictShape()}, taking arguments data, today, memory,
7 #' predict_from, horizon respectively for the dataset (object output of
8 #' \code{getData()}), the current index, the data depth (in days), the first predicted
9 #' hour and the last predicted hour.
10 #' In addition, optional arguments can be passed:
11 #' \itemize{
12 #' \item local : TRUE (default) to constrain neighbors to be "same days within same
13 #' season"
14 #' \item simtype : 'endo' for a similarity based on the series only,<cr>
15 #' 'exo' for a similarity based on exogenous variables only,<cr>
16 #' 'mix' for the product of 'endo' and 'exo',<cr>
17 #' 'none' (default) to apply a simple average: no computed weights
18 #' \item window : A window for similarities computations; override cross-validation
19 #' window estimation.
20 #' }
21 #' The method is summarized as follows:
22 #' \enumerate{
23 #' \item Determine N (=20) recent days without missing values, and followed by a
24 #' tomorrow also without missing values.
25 #' \item Optimize the window parameters (if relevant) on the N chosen days.
26 #' \item Considering the optimized window, compute the neighbors (with locality
27 #' constraint or not), compute their similarities -- using a gaussian kernel if
28 #' simtype != "none" -- and average accordingly the "tomorrows of neigbors" to
29 #' obtain the final prediction.
30 #' }
31 #'
32 #' @usage # NeighborsForecaster$new(pjump)
33 #'
34 #' @docType class
35 #' @format R6 class, inherits Forecaster
36 #' @aliases F_Neighbors
37 #'
38 NeighborsForecaster = R6::R6Class("NeighborsForecaster",
39 inherit = Forecaster,
40
41 public = list(
42 predictShape = function(data, today, memory, predict_from, horizon, ...)
43 {
44 # (re)initialize computed parameters
45 private$.params <- list("weights"=NA, "indices"=NA, "window"=NA)
46
47 # Do not forecast on days with NAs (TODO: softer condition...)
48 if (any(is.na(data$getSerie(today-1))) ||
49 (predict_from>=2 && any(is.na(data$getSerie(today)[1:(predict_from-1)]))))
50 {
51 return (NA)
52 }
53
54 # Get optional args
55 local = ifelse(hasArg("local"), list(...)$local, TRUE) #same level + season?
56 simtype = ifelse(hasArg("simtype"), list(...)$simtype, "none") #or "endo", or "exo"
57 opera = ifelse(hasArg("opera"), list(...)$opera, FALSE) #operational mode?
58
59 # Determine indices of no-NAs days preceded by no-NAs yerstedays
60 tdays = .getNoNA2(data, max(today-memory,2), ifelse(opera,today-1,data$getSize()))
61 if (!opera)
62 tdays = setdiff(tdays, today) #always exclude current day
63
64 # Shortcut if window is known or local==TRUE && simtype==none
65 if (hasArg("window") || (local && simtype=="none"))
66 {
67 return ( private$.predictShapeAux(data, tdays, today, predict_from, horizon,
68 local, list(...)$window, simtype, opera, TRUE) )
69 }
70
71 # Indices of similar days for cross-validation; TODO: 20 = magic number
72 cv_days = getSimilarDaysIndices(today, data, limit=20, same_season=FALSE,
73 days_in=tdays, operational=opera)
74
75 # Optimize h : h |--> sum of prediction errors on last N "similar" days
76 errorOnLastNdays = function(window, simtype)
77 {
78 error = 0
79 nb_jours = 0
80 for (i in seq_along(cv_days))
81 {
82 # mix_strategy is never used here (simtype != "mix"), therefore left blank
83 prediction = private$.predictShapeAux(data, tdays, cv_days[i], predict_from,
84 horizon, local, window, simtype, opera, FALSE)
85 if (!is.na(prediction[1]))
86 {
87 nb_jours = nb_jours + 1
88 error = error +
89 mean((data$getSerie(cv_days[i])[predict_from:horizon] - prediction)^2)
90 }
91 }
92 return (error / nb_jours)
93 }
94
95 # TODO: 7 == magic number
96 if (simtype=="endo" || simtype=="mix")
97 {
98 best_window_endo = optimize(
99 errorOnLastNdays, c(0,7), simtype="endo")$minimum
100 }
101 if (simtype=="exo" || simtype=="mix")
102 {
103 best_window_exo = optimize(
104 errorOnLastNdays, c(0,7), simtype="exo")$minimum
105 }
106
107 best_window =
108 if (simtype == "endo")
109 best_window_endo
110 else if (simtype == "exo")
111 best_window_exo
112 else if (simtype == "mix")
113 c(best_window_endo,best_window_exo)
114 else #none: value doesn't matter
115 1
116
117 return( private$.predictShapeAux(data, tdays, today, predict_from, horizon, local,
118 best_window, simtype, opera, TRUE) )
119 }
120 ),
121 private = list(
122 # Precondition: "yersteday until predict_from-1" is full (no NAs)
123 .predictShapeAux = function(data, tdays, today, predict_from, horizon, local, window,
124 simtype, opera, final_call)
125 {
126 tdays_cut = tdays[ tdays != today ]
127 if (length(tdays_cut) == 0)
128 return (NA)
129
130 if (local)
131 {
132 # limit=Inf to not censor any day (TODO: finite limit? 60?)
133 tdays = getSimilarDaysIndices(today, data, limit=Inf, same_season=TRUE,
134 days_in=tdays_cut, operational=opera)
135 # if (length(tdays) <= 1)
136 # return (NA)
137 # TODO: 10 == magic number
138 tdays = .getConstrainedNeighbs(today, data, tdays, min_neighbs=10)
139 if (length(tdays) == 1)
140 {
141 if (final_call)
142 {
143 private$.params$weights <- 1
144 private$.params$indices <- tdays
145 private$.params$window <- 1
146 }
147 return ( data$getSerie(tdays[1])[predict_from:horizon] )
148 }
149 max_neighbs = 12 #TODO: 12 = arbitrary number
150 if (length(tdays) > max_neighbs)
151 {
152 distances2 <- .computeDistsEndo(data, today, tdays, predict_from)
153 ordering <- order(distances2)
154 tdays <- tdays[ ordering[1:max_neighbs] ]
155 }
156 }
157 else
158 tdays = tdays_cut #no conditioning
159
160 if (simtype == "endo" || simtype == "mix")
161 {
162 # Compute endogen similarities using given window
163 window_endo = ifelse(simtype=="mix", window[1], window)
164
165 # Distances from last observed day to selected days in the past
166 # TODO: redundant computation if local==TRUE
167 distances2 <- .computeDistsEndo(data, today, tdays, predict_from)
168
169 simils_endo <- .computeSimils(distances2, window_endo)
170 }
171
172 if (simtype == "exo" || simtype == "mix")
173 {
174 # Compute exogen similarities using given window
175 window_exo = ifelse(simtype=="mix", window[2], window)
176
177 distances2 <- .computeDistsExo(data, today, tdays)
178
179 simils_exo <- .computeSimils(distances2, window_exo)
180 }
181
182 similarities =
183 if (simtype == "exo")
184 simils_exo
185 else if (simtype == "endo")
186 simils_endo
187 else if (simtype == "mix")
188 simils_endo * simils_exo
189 else #none
190 rep(1, length(tdays))
191 similarities = similarities / sum(similarities)
192
193 prediction = rep(0, horizon-predict_from+1)
194 for (i in seq_along(tdays))
195 {
196 prediction = prediction +
197 similarities[i] * data$getSerie(tdays[i])[predict_from:horizon]
198 }
199
200 if (final_call)
201 {
202 private$.params$weights <- similarities
203 private$.params$indices <- tdays
204 private$.params$window <-
205 if (simtype=="endo")
206 window_endo
207 else if (simtype=="exo")
208 window_exo
209 else if (simtype=="mix")
210 c(window_endo,window_exo)
211 else #none
212 1
213 }
214
215 return (prediction)
216 }
217 )
218 )
219
220 # getConstrainedNeighbs
221 #
222 # Get indices of neighbors of similar pollution level (among same season + day type).
223 #
224 # @param today Index of current day
225 # @param data Object of class Data
226 # @param tdays Current set of "second days" (no-NA pairs)
227 # @param min_neighbs Minimum number of points in a neighborhood
228 # @param max_neighbs Maximum number of points in a neighborhood
229 #
230 .getConstrainedNeighbs = function(today, data, tdays, min_neighbs=10)
231 {
232 levelToday = data$getLevelHat(today)
233 # levelYersteday = data$getLevel(today-1)
234 distances = sapply(tdays, function(i) {
235 # sqrt((data$getLevel(i-1)-levelYersteday)^2 + (data$getLevel(i)-levelToday)^2)
236 abs(data$getLevel(i)-levelToday)
237 })
238 #TODO: 1, +1, +3 : magic numbers
239 dist_thresh = 1
240 min_neighbs = min(min_neighbs,length(tdays))
241 repeat
242 {
243 same_pollution = (distances <= dist_thresh)
244 nb_neighbs = sum(same_pollution)
245 if (nb_neighbs >= min_neighbs) #will eventually happen
246 break
247 dist_thresh = dist_thresh + ifelse(dist_thresh>1,3,1)
248 }
249 tdays = tdays[same_pollution]
250 # max_neighbs = 12
251 # if (nb_neighbs > max_neighbs)
252 # {
253 # # Keep only max_neighbs closest neighbors
254 # tdays = tdays[ order(distances[same_pollution])[1:max_neighbs] ]
255 # }
256 tdays
257 }
258
259 # compute similarities
260 #
261 # Apply the gaussian kernel on computed squared distances.
262 #
263 # @param distances2 Squared distances
264 # @param window Window parameter for the kernel
265 #
266 .computeSimils <- function(distances2, window)
267 {
268 sd_dist = sd(distances2)
269 if (sd_dist < .25 * sqrt(.Machine$double.eps))
270 {
271 # warning("All computed distances are very close: stdev too small")
272 sd_dist = 1 #mostly for tests... FIXME:
273 }
274 exp(-distances2/(sd_dist*window^2))
275 }
276
277 .computeDistsEndo <- function(data, today, tdays, predict_from)
278 {
279 lastSerie = c( data$getSerie(today-1),
280 data$getSerie(today)[if (predict_from>=2) 1:(predict_from-1) else c()] )
281 sapply(tdays, function(i) {
282 delta = lastSerie - c(data$getSerie(i-1),
283 data$getSerie(i)[if (predict_from>=2) 1:(predict_from-1) else c()])
284 sqrt(mean(delta^2))
285 })
286 }
287
288 .computeDistsExo <- function(data, today, tdays)
289 {
290 M = matrix( ncol=1+length(tdays), nrow=1+length(data$getExo(1)) )
291 M[,1] = c( data$getLevelHat(today), as.double(data$getExoHat(today)) )
292 for (i in seq_along(tdays))
293 M[,i+1] = c( data$getLevel(tdays[i]), as.double(data$getExo(tdays[i])) )
294
295 sigma = cov(t(M)) #NOTE: robust covariance is way too slow
296 # TODO: 10 == magic number; more robust way == det, or always ginv()
297 sigma_inv =
298 if (length(tdays) > 10)
299 solve(sigma)
300 else
301 MASS::ginv(sigma)
302
303 # Distances from last observed day to days in the past
304 sapply(seq_along(tdays), function(i) {
305 delta = M[,1] - M[,i+1]
306 delta %*% sigma_inv %*% delta
307 })
308 }