69939b2c2580d2fd5d2a99289c1aba807faceba6
[epclust.git] / old_C_code / stage2_UNFINISHED / src / 05_cluster2stepWER.r
1 ## File : 05_cluster2stepWER.r
2 ## Description :
3
4 rm(list = ls())
5
6 setwd("~/ownCloud/projects/2014_EDF-Orsay-Lyon2/codes/")
7
8 library(Rwave) # CWT
9 library(cluster) # pam
10 #library(flexclust) # kcca
11 source("aux.r") # auxiliary clustering functions
12
13 #TODO: [plus tard] alternative à sowa (package disparu) : cwt..
14 source("sowas-superseded.r") # auxiliary CWT functions
15
16 ## 1. Read auxiliar data files ####
17
18 identifiants <- read.table("identifs.txt")[ ,1]
19 dates0 <- read.table("datesall.txt")[, 1]
20 dates <- as.character(dates0[grep("2009", dates0)])
21 rm(dates0)
22
23 n <- length(identifiants)
24 p <- delta <- length(dates)
25
26 synchros09 <- t(as.matrix(read.table("~/tmp/2009_synchros200RC.txt")))
27 #synchros09 <- t(as.matrix(read.table("~/tmp/2009_synchros200-random.txt")))
28
29 nas <- which(is.na(synchros09)[, 1]) # some 1/1/2009 are missing
30 synchros09[nas, 1] <- rowMeans(synchros09[nas, 2:4]) #valeurs après 1er janvier
31
32 #moyenne pondérée pour compléter deux demi-heures manquantes
33 imput09 <- synchros09[, 4180:4181] %*% matrix(c(2/3, 1/3, 1/3, 2/3), 2)
34 synchros09 <- cbind(synchros09[, 1:4180], imput09, synchros09[, 4181:17518])
35
36 conso <- synchros09[-201, ]; # series must be on rows
37 n <- nrow(conso)
38 delta <- ncol(conso)
39
40 rm(synchros09, nas)
41
42 ## 2. Compute WER distance matrix ####
43
44 ## _.a CWT -- Filtering the lowest freqs (>6m) ####
45 nvoice <- 4
46 # # noctave4 = 2^13 = 8192 half hours ~ 180 days
47 noctave4 <- adjust.noctave(N = delta, dt = 1, s0 = 2,
48 # tw = 0, noctave = 13)
49 # # 4 here represent 2^5 = 32 half-hours ~ 1 day
50 scalevector4 <- 2^(4:(noctave4 * nvoice) / nvoice) * 2
51 lscvect4 <- length(scalevector4)
52 lscvect <- lscvect4 # i should clean my code: werFam demands a lscvect
53
54
55 #17000 colonnes coeff 1, puis 17000 coeff 2... [non : dans chaque tranche du cube]
56
57 #TODO: une fonction qui fait lignes 59 à 91
58
59 #cube:
60 # Xcwt4 <- toCWT(conso, noctave = noctave4, dt = 1,
61 # scalevector = scalevector4,
62 # lt = delta, smooth = FALSE,
63 # nvoice = nvoice) # observations node with CWT
64 #
65 # #matrix:
66 # ############Xcwt2 <- matrix(0.0, nrow= n, ncol= 2 + delta * lscvect)
67 # #Xcwt2 <- matrix(NA_complex_, nrow= n, ncol= 2 + length((c(Xcwt4[,,1]))))
68 #
69 # #NOTE: delta et lscvect pourraient etre gardés à part (communs)
70 # for(i in 1:n)
71 # Xcwt2[i,] <- c(delta, lscvect, Xcwt4[,,i] / max(Mod(Xcwt4[,,i])) )
72 #
73 # #rm(conso, Xcwt4); gc()
74 #
75 # ## _.b WER^2 distances ########
76 # Xwer_dist <- matrix(0.0, n, n)
77 # for(i in 1:(n - 1)){
78 # mat1 <- vect2mat(Xcwt2[i,])
79 # for(j in (i + 1):n){
80 # mat2 <- vect2mat(Xcwt2[j,])
81 # num <- Mod(mat1 * Conj(mat2))
82 # WX <- Mod(mat1 * Conj(mat1))
83 # WY <- Mod(mat2 * Conj(mat2))
84 # smsmnum <- smCWT(num, scalevector = scalevector4)
85 # smsmWX <- smCWT(WX, scalevector = scalevector4)
86 # smsmWY <- smCWT(WY, scalevector = scalevector4)
87 # wer2 <- sum(colSums(smsmnum)^2) /
88 # sum( sum(colSums(smsmWX) * colSums(smsmWY)) )
89 # Xwer_dist[i, j] <- sqrt(delta * lscvect * (1 - wer2))
90 # Xwer_dist[j, i] <- Xwer_dist[i, j]
91 # }
92 # }
93 # diag(Xwer_dist) <- numeric(n)
94 #
95 # save(Xwer_dist, file = "../res/2009_synchros200WER.Rdata")
96 # save(Xwer_dist, file = "../res/2009_synchros200-randomWER.Rdata")
97
98
99
100 #lignes 59 à 91 "dépliées" :
101 Xcwt4 <- toCWT(conso, noctave = noctave4, dt = 1,
102 scalevector = scalevector4,
103 lt = delta, smooth = FALSE,
104 nvoice = nvoice) # observations node with CWT
105
106 #matrix:
107 ############Xcwt2 <- matrix(0.0, nrow= n, ncol= 2 + delta * lscvect)
108 Xcwt2 <- matrix(NA_complex_, nrow= n, ncol= 2 + length((c(Xcwt4[,,1]))))
109
110 #NOTE: delta et lscvect pourraient etre gardés à part (communs)
111 for(i in 1:n)
112 Xcwt2[i,] <- c(delta, lscvect, Xcwt4[,,i] / max(Mod(Xcwt4[,,i])) )
113
114 #rm(conso, Xcwt4); gc()
115
116 ## _.b WER^2 distances ########
117 Xwer_dist <- matrix(0.0, n, n)
118 for(i in 1:(n - 1)){
119 mat1 <- vect2mat(Xcwt2[i,])
120
121 #NOTE: vect2mat = as.matrix ?! (dans aux.R)
122 vect2mat <- function(vect){
123 vect <- as.vector(vect)
124 matrix(vect[-(1:2)], delta, lscvect)
125 }
126
127 for(j in (i + 1):n){
128 mat2 <- vect2mat(Xcwt2[j,])
129 num <- Mod(mat1 * Conj(mat2))
130 WX <- Mod(mat1 * Conj(mat1))
131 WY <- Mod(mat2 * Conj(mat2))
132 smsmnum <- smCWT(num, scalevector = scalevector4)
133 smsmWX <- smCWT(WX, scalevector = scalevector4)
134 smsmWY <- smCWT(WY, scalevector = scalevector4)
135 wer2 <- sum(colSums(smsmnum)^2) /
136 sum( sum(colSums(smsmWX) * colSums(smsmWY)) )
137 Xwer_dist[i, j] <- sqrt(delta * lscvect * (1 - wer2))
138 Xwer_dist[j, i] <- Xwer_dist[i, j]
139 }
140 }
141 diag(Xwer_dist) <- numeric(n)
142
143 #fonction smCWT (dans aux.R)
144 smCWT <- function(CWT, sw= 0, tw= 0, swabs= 0,
145 nvoice= 12, noctave= 2, s0= 2, w0= 2*pi,
146 lt= 24, dt= 0.5, scalevector )
147 {
148 # noctave <- adjust.noctave(lt, dt, s0, tw, noctave)
149 # scalevector <- 2^(0:(noctave * nvoice) / nvoice) * s0
150 wsp <- Mod(CWT)
151 smwsp <- smooth.matrix(wsp, swabs)
152 smsmwsp <- smooth.time(smwsp, tw, dt, scalevector)
153 smsmwsp
154 }
155
156 #dans sowas.R
157 smooth.matrix <- function(wt,swabs){
158
159 if (swabs != 0)
160 smwt <- t(filter(t(wt),rep(1,2*swabs+1)/(2*swabs+1)))
161 else
162 smwt <- wt
163
164 smwt
165
166 }
167 smooth.time <- function(wt,tw,dt,scalevector){
168
169 smwt <- wt
170
171 if (tw != 0){
172 for (i in 1:length(scalevector)){
173
174 twi <- as.integer(scalevector[i]*tw/dt)
175 smwt[,i] <- filter(wt[,i],rep(1,2*twi+1)/(2*twi+1))
176
177 }
178 }
179 smwt
180 }
181
182 #et filter() est dans stats::
183
184 #cf. filters en C dans : https://svn.r-project.org/R/trunk/src/library/stats/src/filter.c
185
186
187
188 load("../res/2009_synchros200WER.Rdata")
189 #load("../res/2009_synchros200-randomWER.Rdata")
190
191 ## 3. Cluster using WER distance matrix ####
192
193 #hc <- hclust(as.dist(Xwer_dist), method = "ward.D")
194 #plot(hc)
195 #
196 # #clust <- cutree(hc, 2)
197 #
198 for(K in 2:30){
199 #K <- 3
200 #pamfit <- pam(tdata[-201, ci$selectv], k = K)
201 pamfit <- pam(as.dist(Xwer_dist), k = K, diss = TRUE)
202
203 #table(pamfit$clustering)
204
205 SC <- matrix(0, ncol = p, nrow = K)
206
207 clustfactor <- pamfit$clustering
208 # for(k in 1:K){
209 # clustk <- which(clustfactor == k)
210 # if(length(clustk) > 0) {
211 # if(length(clustk) > 1) {
212 # SCk <- colSums(synchros09[which(clustfactor == k), ])
213 # } else {
214 # SCk <- synchros09[which(clustfactor == k), ]
215 # }
216 # SC[k, ] <- SC[k, ] + SCk
217 # rm(SCk)
218 # }
219 #}
220
221 #write.table(clustfactor, file = paste0("~/tmp/clustfactorRC", K, ".txt"))
222 #write.table(clustfactor, file = "~/tmp/clustfactor3.txt")
223 #write.table(clustfactor, file = paste0("~/tmp/clustfactorWER", K, ".txt"))
224 write.table(clustfactor, file = paste0("~/tmp/clustfactor-randomWER", K, ".txt"))
225 }
226 #
227 # # Plots
228 # layout(1)
229 # matplot(t(SC)[48*10 + 1:(48*30), ], type = 'l', ylab = '',col = 1:3, lty = 1)
230 # matplot(t(SC)[48*100 + 1:(48*30), ], type = 'l', ylab = '', col = 1:3, lty = 1)
231 #
232 #
233 #