improve report
[talweg.git] / reports / OLD / report_2017-02-02.Rnw
1 \documentclass[a4paper,12pt]{article}
2 \usepackage[utf8]{inputenc}
3 \usepackage[T1]{fontenc}
4
5 \renewcommand*\familydefault{\sfdefault}
6
7 \marginparwidth 0pt
8 \oddsidemargin 0pt
9 \evensidemargin 0pt
10 \marginparsep 0pt
11 \topmargin 0pt
12 \textwidth 16cm
13 \textheight 23cm
14 \parindent 5mm
15
16 \begin{document}
17
18 \section{Package R "ppmfun"}
19
20 Le package $-$ Predict PM10 with FUNctional methods $-$ contient le code permettant de (re)lancer
21 les expériences numériques décrites dans ce document. La fonction principale \emph{predictPM10}
22 se divise en trois parties, décrites successivement au cours des trois paragraphes suivants.\\
23
24 <<setup, out.width='7cm', out.height='7cm'>>=
25 #Chargement de la librairie (après compilation, "R CMD INSTALL ppmfun/")
26 library(ppmfun)
27 @
28
29 Note : sur la base de nos dernières expériences, on considère que
30 \begin{itemize}
31 \item on ne touche pas à la fenêtre obtenue par optim() ;}
32 \item on oublie la méthode consistant à prédire forme et niveau de manière complètement
33 déconnectée : il faut relier les deux.
34 \end{itemize}
35
36 \subsection{Acquisition des données}
37
38 Compte-tenu de la nature hétérogène des données utilisées $-$ fonctionnelles pour les PM10,
39 vectorielles pour les variables exogènes $-$, celles-ci sont organisées sous forme d'une liste
40 \emph{data}, la $i^{eme}$ cellule correspondant aux données disponibles au $i^{eme}$ jour à
41 l'heure $H$ de prédiction choisie (1h00, 8h00 ou 14h00) : c'est-à-dire les valeurs des PM10 de
42 $H-24h$ à $H-1H$, ainsi que les variables météo prédites pour la période de $1h00$ à $0h$ du
43 jour courant (sauf si on prédit à 0h : on prend alors les valeurs mesurées de la veille).\\
44
45 Exemple :\\
46 <<data>>=
47 #Le premier argument indique la zone horaire souhaitée ; "GMT" ou "local"
48 #pour l'heure française, ou tout autre fuseau horaire.
49 data = getData("local", "7h")
50 @
51
52 \subsection{Prédiction}
53
54 Deux types de prévisions du prochain bloc de $24h$ sont à distinguer :
55 \begin{itemize}
56 \item prévision de la forme (centrée) ;
57 \item prévision du saut d'une fin de série au début de la suivante.
58 \end{itemize}
59
60 \noindent Il faut ainsi préciser à la fois une méthode de prévision de forme ("Persistence" et
61 "Neighbors" implémentées), et une méthode de prédiction de saut ("Zero", "Persistence" ou
62 "Neighbors"). On détaille surtout la méthode à voisins ci-après.\\
63
64 \begin{enumerate}
65 \item \textbf{Préparation des données} : calcul des niveaux sur 24h, fenêtrage si demandé
66 (paramètre "memory").
67 \item \textbf{Optimisation des paramètres d'échelle} : via la fonction \emph{optim()}
68 minimisant la somme des 45 dernières erreurs jounalières L2.
69 \item \textbf{Prédiction finale} : une fois le (ou les, si "simtype" vaut "mix") paramètre
70 d'échelle $h$ déterminé, les similarités sont évaluées sur les variables exogènes et/ou
71 endogènes, sous la forme $s(i,j) = \mbox{exp}\left(-\frac{\mbox{dist}^2(i,j)}{h^2}\right)$.
72 La formule indiquée plus haut dans le rapport est alors appliquée.
73 \end{enumerate}
74
75 \subsection{Calcul des erreurs}
76
77 Pour chacun des instants à prévoir jusqu'à minuit du jour courant, on calcule l'erreur moyenne
78 sur tous les instants similaires du passé (sur la plage prédite). Trois
79 types d'erreurs sont considérées :
80 \begin{itemize}
81 \item l'erreur "abs" égale à la valeur absolue moyenne entre la mesure et la prédiction ;
82 \item l'erreur "MAPE" égale à l'erreur absolue normalisée par la mesure.
83 \item l'erreur "RMSE" égale à la racine carrée de l'erreur quadratique moyenne.
84 \end{itemize}
85
86 \subsection{Expériences numériques}
87
88 %, fig.show='hold'>>=
89 <<xp1, out.width='18cm', out.height='6cm'>>=
90 p_endo = predictPM10(data, 2200, 2230, 0,0, "Neighbors", "Neighbors", simtype="endo")
91 p_exo = predictPM10(data, 2200, 2230, 0,0, "Neighbors", "Neighbors", simtype="exo")
92 p_mix = predictPM10(data, 2200, 2230, 0,0, "Neighbors", "Neighbors", simtype="mix")
93 p = c(p_endo, p_exo, p_mix)
94 yrange_MAPE = range(p_mix$errors$MAPE, p_endo$errors$MAPE, p_exo$errors$MAPE)
95 yrange_abs = range(p_mix$errors$abs, p_endo$errors$abs, p_exo$errors$abs)
96 yrange_RMSE = range(p_mix$errors$RMSE, p_endo$errors$RMSE, p_exo$errors$RMSE)
97 ranges = c(yrange_MAPE,yrange_abs,yrange_RMSE)
98 par(mfrow=c(1,3))
99 titles = paste("Erreur",c("MAPE","abs","RMSE"))
100 for (i in 1:3) #error type (MAPE,abs,RMSE)
101 {
102 for (j in 1:3) #model (mix,endo,exo)
103 {
104 plot(p[j]$errors[[i]], type="l", col=j, main=titles[i], xlab="Temps",
105 ylab="Erreur", ylim=ranges[i])
106 par(new=TRUE)
107 }
108 }
109
110 #Ne tenir compte que des similarités sur les variables exogènes semble
111 #conduire à l'erreur la plus faible.
112 @
113
114 <<xp2, out.width='18cm', out.height='6cm'>>=
115 p_nn = predictPM10(data, 2200, 2230, 0, 0, "Neighbors", "Neighbors", sameSeaon=TRUE)
116 p_np = predictPM10(data, 2200, 2230, 0, 0, "Neighbors", "Persistence", sameSeaon=TRUE)
117 p_nz = predictPM10(data, 2200, 2230, 0, 0, "Neighbors", "Zero", sameSeaon=TRUE)
118 p_pp = predictPM10(data, 2200, 2230, 0, 0, "Persistence", "Persistence")
119 p_pz = predictPM10(data, 2200, 2230, 0, 0, "Persistence", "Zero")
120 p = c(p_nn, p_np, p_nz, p_pp, p_pz)
121 yrange_MAPE = range(p_nn$errors$MAPE, p_nz$errors$MAPE, p_np$errors$MAPE, p_pp$errors$MAPE, p_pz$errors$MAPE)
122 yrange_abs = range(p_nn$errors$abs, p_nz$errors$abs, p_np$errors$abs, p_pp$errors$abs, p_pz$errors$abs)
123 yrange_RMSE = range(p_nn$errors$RMSE, p_nz$errors$RMSE, p_np$errors$RMSE, p_pp$errors$RMSE, p_pz$errors$RMSE)
124 ranges = c(yrange_MAPE,yrange_abs,yrange_RMSE)
125 par(mfrow=c(1,3))
126 for (i in 1:3) #error type (MAPE,abs,RMSE)
127 {
128 for (j in 1:5) #model (nn,np,nz,pp,pz)
129 {
130 plot(p[j]$errors[[i]], type="l", col=j, main=titles[i], xlab="Temps",
131 ylab="Erreur", ylim=ranges[i])
132 if (j<5)
133 par(new=TRUE)
134 }
135 }
136
137 #Meilleurs results: nn et nz (np moins bon)
138 @
139
140 %%TODO: analyse sur les trois périodes indiquées par Michel ; simtype=="exo" par defaut
141 16/03/2015
142 p_nn_epandage = predictPM10(data, 2200, 2200, 0, 0, "Neighbors", "Neighbors", sameSeaon=FALSE)
143 19/01/2015
144 p_nn_chauffage = predictPM10(data, 2200, 2200, 0, 0, "Neighbors", "Neighbors", sameSeaon=FALSE)
145 23/02/2015
146 p_nn_nonpollue = predictPM10(data, 2200, 2200, 0, 0, "Neighbors", "Neighbors", sameSeaon=FALSE)
147
148 \subsection{Suite du travail}
149
150 Le type de jour n'est pas pris en compte dans la recherche de voisins ; cela diminuerait
151 nettement le nombre de similarités retenues, mais pourrait significativement améliorer les
152 prévisions. \textcolor{blue}{OK : on le prend désormais en compte}\\
153
154 \noindent Il serait intéressant également de disposer de plusieurs méthodes de prédiction, pour
155 par exemple les agréger à l'aide de méthodes similaires à celles du précédent contrat.
156 \textcolor{blue}{OK : on commence à en avoir quelques-unes}
157
158 \end{document}