Commit | Line | Data |
---|---|---|
83ed2c0a BG |
1 | EMGLLF = function(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,lambda,X,Y,tau){ |
2 | #matrix dimensions | |
3 | n = dim(X)[1] | |
c2028869 BG |
4 | p = dim(phiInit)[1] |
5 | m = dim(phiInit)[2] | |
6 | k = dim(phiInit)[3] | |
83ed2c0a BG |
7 | |
8 | #init outputs | |
9 | phi = phiInit | |
10 | rho = rhoInit | |
11 | Pi = piInit | |
12 | LLF = rep(0, maxi) | |
13 | S = array(0, dim=c(p,m,k)) | |
14 | ||
15 | ||
16 | gam = gamInit | |
17 | Gram2 = array(0, dim=c(p,p,k)) | |
18 | ps2 = array(0, dim=c(p,m,k)) | |
19 | b = rep(0, k) | |
20 | pen = matrix(0, maxi, k) | |
21 | X2 = array(0, dim=c(n,p,k)) | |
6e22eb7b | 22 | Y2 = array(0, dim=c(n,m,k)) |
83ed2c0a BG |
23 | dist = 0 |
24 | dist2 = 0 | |
25 | ite = 1 | |
26 | Pi2 = rep(0, k) | |
27 | ps = matrix(0, m,k) | |
28 | nY2 = matrix(0, m,k) | |
29 | ps1 = array(0, dim=c(n,m,k)) | |
30 | nY21 = array(0, dim=c(n,m,k)) | |
31 | Gam = matrix(0, n,k) | |
32 | EPS = 1E-15 | |
33 | ||
34 | while(ite <= mini || (ite<= maxi && (dist>= tau || dist2 >= sqrt(tau)))){ | |
35 | Phi = phi | |
36 | Rho = rho | |
37 | PI = Pi | |
38 | #calcul associé à Y et X | |
39 | for(r in 1:k){ | |
40 | for(mm in 1:m){ | |
6e22eb7b | 41 | Y2[,mm,r] = sqrt(gam[,r]) * Y[,mm] ##bon calcul ? idem pour X2 ??... |
83ed2c0a BG |
42 | } |
43 | for(i in 1:n){ | |
6e22eb7b | 44 | X2[i,,r] = X[i,] *sqrt(gam[i,r]) |
83ed2c0a BG |
45 | } |
46 | for(mm in 1:m){ | |
47 | ps2[,mm,r] = crossprod(X2[,,r],Y2[,mm,r]) | |
48 | } | |
49 | for(j in 1:p){ | |
50 | for(s in 1:p){ | |
6e22eb7b | 51 | Gram2[j,s,r] = crossprod(X2[,j,r], X2[,s,r]) |
83ed2c0a BG |
52 | } |
53 | } | |
54 | } | |
55 | ||
56 | ########## | |
57 | #Etape M # | |
58 | ########## | |
59 | ||
60 | #pour pi | |
61 | for(r in 1:k){ | |
62 | b[r] = sum(sum(abs(phi[,,r]))) | |
63 | } | |
87fea89a | 64 | gam2 = colSums(gam) |
6e22eb7b | 65 | a = sum(gam%*%(log(Pi))) |
83ed2c0a BG |
66 | |
67 | #tant que les props sont negatives | |
68 | kk = 0 | |
69 | pi2AllPositive = FALSE | |
70 | while(pi2AllPositive == FALSE){ | |
c2028869 | 71 | Pi2 = Pi + 0.1^kk * ((1/n)*gam2 - Pi) |
83ed2c0a BG |
72 | pi2AllPositive = TRUE |
73 | for(r in 1:k){ | |
c2028869 | 74 | if(Pi2[r] < 0){ |
83ed2c0a BG |
75 | pi2AllPositive = false; |
76 | break | |
77 | } | |
78 | } | |
79 | kk = kk+1 | |
80 | } | |
81 | ||
82 | #t[m]la plus grande valeur dans la grille O.1^k tel que ce soit | |
83 | #décroissante ou constante | |
6e22eb7b | 84 | while((-1/n*a+lambda*((Pi^gamma)%*%t(b)))<(-1/n*gam2%*%t(log(Pi2))+lambda*(Pi2^gamma)%*%t(b)) && kk<1000){ |
c2028869 | 85 | Pi2 = Pi+0.1^kk*(1/n*gam2-Pi) |
83ed2c0a BG |
86 | kk = kk+1 |
87 | } | |
88 | t = 0.1^(kk) | |
c2028869 | 89 | Pi = (Pi+t*(Pi2-Pi)) / sum(Pi+t*(Pi2-Pi)) |
83ed2c0a BG |
90 | |
91 | #Pour phi et rho | |
92 | for(r in 1:k){ | |
93 | for(mm in 1:m){ | |
94 | for(i in 1:n){ | |
6e22eb7b | 95 | ps1[i,mm,r] = Y2[i,mm,r] * (X2[i,,r]%*%(phi[,mm,r])) |
83ed2c0a BG |
96 | nY21[i,mm,r] = (Y2[i,mm,r])^2 |
97 | } | |
b45ba1b0 BG |
98 | ps[mm,r] = sum(ps1[,mm,r]) |
99 | nY2[mm,r] = sum(nY21[,mm,r]) | |
83ed2c0a BG |
100 | rho[mm,mm,r] = ((ps[mm,r]+sqrt(ps[mm,r]^2+4*nY2[mm,r]*(gam2[r])))/(2*nY2[mm,r])) |
101 | } | |
102 | } | |
103 | for(r in 1:k){ | |
6e22eb7b BG |
104 | p1 = p-1 |
105 | for(j in 1:p1){ | |
83ed2c0a | 106 | for(mm in 1:m){ |
6e22eb7b BG |
107 | j1 = j-1 |
108 | j2 = j+1 | |
109 | v1 = c(1:j1) | |
110 | v2 = c(j2:p) | |
111 | S[j,mm,r] = -rho[mm,mm,r]*ps2[j,mm,r] + phi[v1,mm,r]%*%(Gram2[j,v1,r]) + phi[v2,mm,r]%*%(Gram2[j,v2,r]) #erreur indice | |
112 | if(abs(S[j,mm,r]) <= n*lambda*(Pi[r]^gamma)){ | |
83ed2c0a | 113 | phi[j,mm,r]=0 |
c2028869 BG |
114 | }else{ |
115 | if(S[j,mm,r]> n*lambda*(Pi[r]^gamma)){ | |
83ed2c0a | 116 | phi[j,mm,r] = (n*lambda*(Pi[r]^gamma)-S[j,mm,r])/Gram2[j,j,r] |
c2028869 BG |
117 | }else{ |
118 | phi[j,mm,r] = -(n*lambda*(Pi[r]^gamma)+S[j,mm,r])/Gram2[j,j,r] | |
119 | } | |
83ed2c0a BG |
120 | } |
121 | } | |
122 | } | |
123 | } | |
124 | ||
125 | ########## | |
126 | #Etape E # | |
127 | ########## | |
128 | sumLogLLF2 = 0 | |
129 | for(i in 1:n){ | |
130 | #precompute dot products to numerically adjust their values | |
131 | dotProducts = rep(0,k) | |
132 | for(r in 1:k){ | |
133 | dotProducts[r] = tcrossprod(Y[i,]%*%rho[,,r]-X[i,]%*%phi[,,r]) | |
134 | } | |
135 | shift = 0.5*min(dotProducts) | |
136 | ||
137 | #compute Gam(:,:) using shift determined above | |
138 | sumLLF1 = 0.0; | |
139 | for(r in 1:k){ | |
140 | Gam[i,r] = Pi[r]*det(rho[,,r])*exp(-0.5*dotProducts[r] + shift) | |
141 | sumLLF1 = sumLLF1 + Gam[i,r]/(2*pi)^(m/2) | |
142 | } | |
143 | sumLogLLF2 = sumLogLLF2 + log(sumLLF1) | |
144 | sumGamI = sum(Gam[i,]) | |
145 | if(sumGamI > EPS) | |
146 | gam[i,] = Gam[i,] / sumGamI | |
147 | else | |
148 | gam[i,] = rep(0,k) | |
149 | } | |
150 | ||
151 | ||
152 | sumPen = 0 | |
153 | for(r in 1:k){ | |
b45ba1b0 | 154 | sumPen = sumPen + Pi[r]^gamma^b[r] |
83ed2c0a BG |
155 | } |
156 | LLF[ite] = -(1/n)*sumLogLLF2 + lambda*sumPen | |
157 | ||
158 | if(ite == 1) | |
159 | dist = LLF[ite] | |
160 | else | |
161 | dist = (LLF[ite]-LLF[ite-1])/(1+abs(LLF[ite])) | |
162 | ||
b45ba1b0 BG |
163 | Dist1=max(max(max((abs(phi-Phi))/(1+abs(phi))))) |
164 | Dist2=max(max(max((abs(rho-Rho))/(1+abs(rho))))) | |
165 | Dist3=max(max((abs(Pi-PI))/(1+abs(PI)))) | |
166 | dist2=max(c(Dist1,Dist2,Dist3)) | |
83ed2c0a BG |
167 | |
168 | ite=ite+1 | |
169 | } | |
170 | ||
6e22eb7b | 171 | Pi = t(Pi) |
e8bb4764 | 172 | return(list("phi"=phi, "rho"=rho, "pi"=Pi, "LLF"=LLF, "S"=S)) |
87fea89a | 173 | } |