31444abc |
1 | simulData_17mars = function(ite){ |
2 | set.seed = 22021989+ite |
3 | |
4 | ########### |
5 | ## Modele |
6 | ########### |
7 | K = 2 |
8cc359e0 |
8 | p = 20 |
31444abc |
9 | T = seq(0,1.5,length.out = p) |
10 | T2 = seq(0,3, length.out = 2*p) |
8cc359e0 |
11 | n = 30 |
31444abc |
12 | x1 = cos(2*base::pi*T) + 0.2*cos(4*2*base::pi*T) + 0.3*c(rep(0,round(length(T)/7)),rep(1,round(length(T)*(1-1/7))))+1 |
13 | sigmaX = 0.12 |
14 | sigmaY = 0.12 |
15 | beta = list() |
16 | p1= 0.5 |
17 | beta[[1]] =diag(c(rep(p1,5),rep(1,5), rep(p1,5), rep(1, p-15))) |
18 | p2 = 1 |
19 | beta[[2]] = diag(c(rep(p2,5),rep(1,5), rep(p2,5), rep(1, p-15))) |
20 | ARI1 = ARI2 = ARI3 = 0 |
21 | |
22 | ########### |
23 | ## Data + Projection |
24 | ########### |
25 | require(wavelets) |
26 | XY = array(0, dim = c(2*p,n)) |
27 | Xproj = array(0, dim=c(48,n)) |
28 | Yproj = array(0, dim=c(48,n)) |
29 | XYproj = array(0, dim=c(96,n)) |
30 | x = x1 + matrix(rnorm(n*p, 0, sigmaX), ncol = n) |
31 | affec = sample(c(1,2), n, replace = TRUE) |
32 | y = x |
33 | xy = matrix(0,ncol=n, nrow= 2*p) |
34 | for (i in c(1:n)){ |
35 | y[,i] = x[,i] %*% beta[[affec[i]]] + rnorm(p, 0, sigmaY) |
36 | xy[,i] = c(x[,i],y[,i]) |
37 | XY[,i] = xy[,i] - mean(xy[,i]) |
38 | Dx = dwt(x[,i], filter='haar')@W |
39 | Dx = rev(unlist(Dx)) |
40 | Dx = Dx[2:(1+3+6+12+24)] |
41 | Ax = dwt(x[,i], filter='haar')@V |
42 | Ax = rev(unlist(Ax)) |
43 | Ax = Ax[2:(1+3)] |
44 | Dy = dwt(y[,i], filter='haar')@W |
45 | Dy = rev(unlist(Dy)) |
46 | Dy = Dy[2:(1+3+6+12+24)] |
47 | Ay = dwt(y[,i], filter='haar')@V |
48 | Ay = rev(unlist(Ay)) |
49 | Ay = Ay[2:(1+3)] |
50 | Xproj[,i] = c(Ax,Dx) |
51 | Yproj[,i] = c(Ay,Dy) |
52 | XYproj[,i] = c(Ax,Dx,Ay,Dy) |
53 | } |
54 | |
55 | res_valse = valse(x,y) |
56 | res_valse_proj = valse(Xproj, Yproj) |
57 | |
58 | save(res_valse,file=paste("./Out/Res_",ite, ".RData",sep="")) |
59 | save(res_valse_proj,file=paste("./Out/ResProj_",ite, ".RData",sep="")) |
60 | } |