From: Benjamin Auder Date: Tue, 25 Apr 2017 08:06:00 +0000 (+0200) Subject: fix mistake in yersteday/today computations X-Git-Url: https://git.auder.net/variants/img/pieces/scripts/doc/css/common.css?a=commitdiff_plain;h=cf3bb00128ac8cb930996455faf7c99a3fc102fb;p=talweg.git fix mistake in yersteday/today computations --- diff --git a/pkg/R/F_Neighbors.R b/pkg/R/F_Neighbors.R index ea18bb6..f140b0b 100644 --- a/pkg/R/F_Neighbors.R +++ b/pkg/R/F_Neighbors.R @@ -45,14 +45,14 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster", private$.params <- list("weights"=NA, "indices"=NA, "window"=NA) # Do not forecast on days with NAs (TODO: softer condition...) - if (any(is.na(data$getSerie(today-1))) - || any(is.na(data$getSerie(today)[1:(predict_from-1)]))) + if (any(is.na(data$getSerie(today-1))) || + (predict_from>=2 && any(is.na(data$getSerie(today)[1:(predict_from-1)])))) { return (NA) } - # Determine indices of no-NAs days followed by no-NAs tomorrows - fdays = .getNoNA2(data, max(today-memory,1), today-2) + # Determine indices of no-NAs days preceded by no-NAs yerstedays + tdays = .getNoNA2(data, max(today-memory,2), today-1) # Get optional args local = ifelse(hasArg("local"), list(...)$local, TRUE) #same level + season? @@ -60,12 +60,12 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster", if (hasArg("window")) { return ( private$.predictShapeAux(data, - fdays, today, predict_from, horizon, local, list(...)$window, simtype, TRUE) ) + tdays, today, predict_from, horizon, local, list(...)$window, simtype, TRUE) ) } # Indices of similar days for cross-validation; TODO: 20 = magic number cv_days = getSimilarDaysIndices(today, data, limit=20, same_season=FALSE, - days_in=fdays) + days_in=tdays) # Optimize h : h |--> sum of prediction errors on last N "similar" days errorOnLastNdays = function(window, simtype) @@ -75,13 +75,13 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster", for (i in seq_along(cv_days)) { # mix_strategy is never used here (simtype != "mix"), therefore left blank - prediction = private$.predictShapeAux(data, fdays, cv_days[i], predict_from, + prediction = private$.predictShapeAux(data, tdays, cv_days[i], predict_from, horizon, local, window, simtype, FALSE) if (!is.na(prediction[1])) { nb_jours = nb_jours + 1 error = error + - mean((data$getSerie(cv_days[i]+1)[predict_from:horizon] - prediction)^2) + mean((data$getSerie(cv_days[i])[predict_from:horizon] - prediction)^2) } } return (error / nb_jours) @@ -109,41 +109,41 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster", else #none: value doesn't matter 1 - return( private$.predictShapeAux(data, fdays, today, predict_from, horizon, local, + return( private$.predictShapeAux(data, tdays, today, predict_from, horizon, local, best_window, simtype, TRUE) ) } ), private = list( # Precondition: "today" is full (no NAs) - .predictShapeAux = function(data, fdays, today, predict_from, horizon, local, window, + .predictShapeAux = function(data, tdays, today, predict_from, horizon, local, window, simtype, final_call) { - fdays_cut = fdays[ fdays < today ] - if (length(fdays_cut) <= 1) + tdays_cut = tdays[ tdays <= today-1 ] + if (length(tdays_cut) <= 1) return (NA) if (local) { # TODO: 60 == magic number - fdays = getSimilarDaysIndices(today, data, limit=60, same_season=TRUE, - days_in=fdays_cut) - if (length(fdays) <= 1) + tdays = getSimilarDaysIndices(today, data, limit=60, same_season=TRUE, + days_in=tdays_cut) + if (length(tdays) <= 1) return (NA) # TODO: 10, 12 == magic numbers - fdays = .getConstrainedNeighbs(today,data,fdays,min_neighbs=10,max_neighbs=12) - if (length(fdays) == 1) + tdays = .getConstrainedNeighbs(today,data,tdays,min_neighbs=10,max_neighbs=12) + if (length(tdays) == 1) { if (final_call) { private$.params$weights <- 1 - private$.params$indices <- fdays + private$.params$indices <- tdays private$.params$window <- 1 } - return ( data$getSerie(fdays[1]+1)[predict_from:horizon] ) + return ( data$getSerie(tdays[1])[predict_from:horizon] ) } } else - fdays = fdays_cut #no conditioning + tdays = tdays_cut #no conditioning if (simtype == "endo" || simtype == "mix") { @@ -151,9 +151,11 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster", window_endo = ifelse(simtype=="mix", window[1], window) # Distances from last observed day to days in the past - lastSerie = c( data$getSerie(today-1), data$getSerie(today)[1:(predict_from-1)] ) - distances2 = sapply(fdays, function(i) { - delta = lastSerie - c(data$getSerie(i),data$getSerie(i+1)[1:(predict_from-1)]) + lastSerie = c( data$getSerie(today-1), + data$getSerie(today)[if (predict_from>=2) 1:(predict_from-1) else c()] ) + distances2 = sapply(tdays, function(i) { + delta = lastSerie - c(data$getSerie(i-1), + data$getSerie(i)[if (predict_from>=2) 1:(predict_from-1) else c()]) sqrt(mean(delta^2)) }) @@ -165,21 +167,21 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster", # Compute exogen similarities using given window window_exo = ifelse(simtype=="mix", window[2], window) - M = matrix( ncol=1+length(fdays), nrow=1+length(data$getExo(1)) ) + M = matrix( ncol=1+length(tdays), nrow=1+length(data$getExo(1)) ) M[,1] = c( data$getLevelHat(today), as.double(data$getExoHat(today)) ) - for (i in seq_along(fdays)) - M[,i+1] = c( data$getLevel(fdays[i]), as.double(data$getExo(fdays[i])) ) + for (i in seq_along(tdays)) + M[,i+1] = c( data$getLevel(tdays[i]), as.double(data$getExo(tdays[i])) ) sigma = cov(t(M)) #NOTE: robust covariance is way too slow # TODO: 10 == magic number; more robust way == det, or always ginv() sigma_inv = - if (length(fdays) > 10) + if (length(tdays) > 10) solve(sigma) else MASS::ginv(sigma) # Distances from last observed day to days in the past - distances2 = sapply(seq_along(fdays), function(i) { + distances2 = sapply(seq_along(tdays), function(i) { delta = M[,1] - M[,i+1] delta %*% sigma_inv %*% delta }) @@ -195,20 +197,20 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster", else if (simtype == "mix") simils_endo * simils_exo else #none - rep(1, length(fdays)) + rep(1, length(tdays)) similarities = similarities / sum(similarities) prediction = rep(0, horizon-predict_from+1) - for (i in seq_along(fdays)) + for (i in seq_along(tdays)) { prediction = prediction + - similarities[i] * data$getSerie(fdays[i]+1)[predict_from:horizon] + similarities[i] * data$getSerie(tdays[i])[predict_from:horizon] } if (final_call) { private$.params$weights <- similarities - private$.params$indices <- fdays + private$.params$indices <- tdays private$.params$window <- if (simtype=="endo") window_endo @@ -231,20 +233,20 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster", # # @param today Index of current day # @param data Object of class Data -# @param fdays Current set of "first days" (no-NA pairs) +# @param tdays Current set of "second days" (no-NA pairs) # @param min_neighbs Minimum number of points in a neighborhood # @param max_neighbs Maximum number of points in a neighborhood # -.getConstrainedNeighbs = function(today, data, fdays, min_neighbs=10, max_neighbs=12) +.getConstrainedNeighbs = function(today, data, tdays, min_neighbs=10, max_neighbs=12) { levelToday = data$getLevelHat(today) levelYersteday = data$getLevel(today-1) - distances = sapply(fdays, function(i) { - sqrt((data$getLevel(i)-levelYersteday)^2 + (data$getLevel(i+1)-levelToday)^2) + distances = sapply(tdays, function(i) { + sqrt((data$getLevel(i-1)-levelYersteday)^2 + (data$getLevel(i)-levelToday)^2) }) #TODO: 1, +1, +3 : magic numbers dist_thresh = 1 - min_neighbs = min(min_neighbs,length(fdays)) + min_neighbs = min(min_neighbs,length(tdays)) repeat { same_pollution = (distances <= dist_thresh) @@ -253,14 +255,14 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster", break dist_thresh = dist_thresh + ifelse(dist_thresh>1,3,1) } - fdays = fdays[same_pollution] + tdays = tdays[same_pollution] max_neighbs = 12 if (nb_neighbs > max_neighbs) { # Keep only max_neighbs closest neighbors - fdays = fdays[ order(distances[same_pollution])[1:max_neighbs] ] + tdays = tdays[ order(distances[same_pollution])[1:max_neighbs] ] } - fdays + tdays } # compute similarities diff --git a/pkg/R/plot.R b/pkg/R/plot.R index 59a26a7..ad0ed4e 100644 --- a/pkg/R/plot.R +++ b/pkg/R/plot.R @@ -236,10 +236,10 @@ plotRelVar = function(data, fil, predict_from) { ref_var = c( apply(data$getSeries(fil$neighb_indices),1,sd), apply(data$getSeries(fil$neighb_indices+1),1,sd) ) - fdays = .getNoNA2(data, 1, fil$index-1) + tdays = .getNoNA2(data, 2, fil$index) global_var = c( - apply(data$getSeries(fdays),1,sd), - apply(data$getSeries(fdays+1),1,sd) ) + apply(data$getSeries(tdays-1),1,sd), + apply(data$getSeries(tdays),1,sd) ) yrange = range(ref_var, global_var) par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) diff --git a/pkg/R/utils.R b/pkg/R/utils.R index 96ec601..a4efd61 100644 --- a/pkg/R/utils.R +++ b/pkg/R/utils.R @@ -118,7 +118,7 @@ getSimilarDaysIndices = function(index, data, limit, same_season, days_in=NULL) # getNoNA2 # -# Get indices in data of no-NA series followed by no-NA, within [first,last] range. +# Get indices in data of no-NA series preceded by no-NA, within [first,last] range. # # @inheritParams dateIndexToInteger # @param first First index (included) @@ -127,6 +127,6 @@ getSimilarDaysIndices = function(index, data, limit, same_season, days_in=NULL) .getNoNA2 = function(data, first, last) { (first:last)[ sapply(first:last, function(i) - !any( is.na(data$getSerie(i)) | is.na(data$getSerie(i+1)) ) + !any( is.na(data$getSerie(i-1)) | is.na(data$getSerie(i)) ) ) ] }