From: Benjamin Auder Date: Sat, 14 Jan 2017 02:53:34 +0000 (+0100) Subject: reorganize test folder: tests generation with MATLAB almost OK (but suboptimal method) X-Git-Url: https://git.auder.net/variants/current/doc/scripts/pieces/img/%3C?a=commitdiff_plain;h=0f51ccae09947bf5e13657eda3bb4b83d0734621;p=valse.git reorganize test folder: tests generation with MATLAB almost OK (but suboptimal method) --- diff --git a/man/TODO b/man/TODO deleted file mode 100644 index e69de29..0000000 diff --git a/src/.gitignore b/src/.gitignore index a8b0573..bdfbcfb 100644 --- a/src/.gitignore +++ b/src/.gitignore @@ -1,6 +1,4 @@ #ignore object files, library and test executables *.o *.so -test.* -!test.*.c vgcore.* diff --git a/src/test/.gitignore b/src/test/.gitignore new file mode 100644 index 0000000..05354ad --- /dev/null +++ b/src/test/.gitignore @@ -0,0 +1,3 @@ +test.* +!test.*.c +/data/ diff --git a/src/test/OLD_TEST_MATLAB/TODO b/src/test/OLD_TEST_MATLAB/TODO deleted file mode 100644 index b3dcd6a..0000000 --- a/src/test/OLD_TEST_MATLAB/TODO +++ /dev/null @@ -1,4 +0,0 @@ -1) transformer les .m en .R : toute la partie "R-only" du package "valse" - est utilisable si besoin -2) sauvegarder les résultats + entrées/sorties à partir du code R uniquement, - dans le dossier src/test/data (** sous forme de vecteurs, sep=" " **) diff --git a/src/test/OLD_TEST_MATLAB/checkOutput.m b/src/test/OLD_TEST_MATLAB/checkOutput.m deleted file mode 100644 index c56ed0b..0000000 --- a/src/test/OLD_TEST_MATLAB/checkOutput.m +++ /dev/null @@ -1,11 +0,0 @@ -function[]=checkOutput(varName, matrix, refMatrix, tol) - - fprintf('Checking %s\n',varName); - maxError = max(max(max(max(abs(matrix - refMatrix))))); - if maxError >= tol - fprintf(' Inaccuracy: max(abs(error)) = %g >= %g\n',maxError,tol); - else - fprintf(' OK\n'); - end - -end diff --git a/src/test/OLD_TEST_MATLAB/testConstructionModelesLassoMLE.m b/src/test/OLD_TEST_MATLAB/testConstructionModelesLassoMLE.m deleted file mode 100644 index 27c1208..0000000 --- a/src/test/OLD_TEST_MATLAB/testConstructionModelesLassoMLE.m +++ /dev/null @@ -1,46 +0,0 @@ -function[] = testConstructionModelesLassoMLE() - - testFolder = 'data/'; - delimiter = '\n'; - - %get dimensions - dimensions = dlmread(strcat(testFolder,'dimensions'), delimiter); - n = dimensions(1); - p = dimensions(2); - m = dimensions(3); - k = dimensions(4); - L = dimensions(5); - - %get all input arrays - phiInit = reshape(dlmread(strcat(testFolder,'phiInit'), delimiter), p, m, k); - rhoInit = reshape(dlmread(strcat(testFolder,'rhoInit'), delimiter), m, m, k); - piInit = transpose(dlmread(strcat(testFolder,'piInit'), delimiter)); - gamInit = reshape(dlmread(strcat(testFolder,'gamInit'), delimiter), n, k); - mini = int64(dlmread(strcat(testFolder,'mini'), delimiter)); - maxi = int64(dlmread(strcat(testFolder,'maxi'), delimiter)); - gamma = dlmread(strcat(testFolder,'gamma'), delimiter); - glambda = dlmread(strcat(testFolder,'glambda'), delimiter); - X = reshape(dlmread(strcat(testFolder,'X'), delimiter), n, p); - Y = reshape(dlmread(strcat(testFolder,'Y'), delimiter), n, m); - seuil = dlmread(strcat(testFolder,'seuil'), delimiter); - tau = dlmread(strcat(testFolder,'tau'), delimiter); - A1 = int64(reshape(dlmread(strcat(testFolder,'A1'), delimiter), p, m+1, L)); - A2 = int64(reshape(dlmread(strcat(testFolder,'A2'), delimiter), p, m+1, L)); - - %run constructionModelesLassoMLE.m - [phi,rho,pi,lvraisemblance] = constructionModelesLassoMLE(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,glambda,X,Y,seuil,tau,A1,A2); - - %get all stored outputs - ref_phi = reshape(dlmread(strcat(testFolder,'phi'), delimiter), p, m, k, L); - ref_rho = reshape(dlmread(strcat(testFolder,'rho'), delimiter), m, m, k, L); - ref_pi = reshape(dlmread(strcat(testFolder,'pi'), delimiter), k, L); - ref_lvraisemblance = reshape(dlmread(strcat(testFolder,'lvraisemblance'), delimiter), L, 2); - - %check that output correspond to stored output - tol = 1e-5; - checkOutput('phi',phi,ref_phi,tol); - checkOutput('rho',rho,ref_rho,tol); - checkOutput('pi',pi,ref_pi,tol); - checkOutput('lvraisemblance',lvraisemblance,ref_lvraisemblance,tol); - -end diff --git a/src/test/OLD_TEST_MATLAB/testEMGLLF.m b/src/test/OLD_TEST_MATLAB/testEMGLLF.m deleted file mode 100644 index 0dd9db8..0000000 --- a/src/test/OLD_TEST_MATLAB/testEMGLLF.m +++ /dev/null @@ -1,44 +0,0 @@ -function[] = testEMGLLF() - - testFolder = 'data/'; - delimiter = '\n'; - - %get dimensions - dimensions = dlmread(strcat(testFolder,'dimensions'), delimiter); - n = dimensions(1); - p = dimensions(2); - m = dimensions(3); - k = dimensions(4); - - %get all input arrays - phiInit = reshape(dlmread(strcat(testFolder,'phiInit'), delimiter), p, m, k); - rhoInit = reshape(dlmread(strcat(testFolder,'rhoInit'), delimiter), m, m, k); - piInit = transpose(dlmread(strcat(testFolder,'piInit'), delimiter)); - gamInit = reshape(dlmread(strcat(testFolder,'gamInit'), delimiter), n, k); - mini = int64(dlmread(strcat(testFolder,'mini'), delimiter)); - maxi = int64(dlmread(strcat(testFolder,'maxi'), delimiter)); - gamma = dlmread(strcat(testFolder,'gamma'), delimiter); - lambda = dlmread(strcat(testFolder,'lambda'), delimiter); - X = reshape(dlmread(strcat(testFolder,'X'), delimiter), n, p); - Y = reshape(dlmread(strcat(testFolder,'Y'), delimiter), n, m); - tau = dlmread(strcat(testFolder,'tau'), delimiter); - - %run EMGLLF.m - [phi,rho,pi,LLF,S] = EMGLLF(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,lambda,X,Y,tau); - - %get all stored outputs - ref_phi = reshape(dlmread(strcat(testFolder,'phi'), delimiter), p, m, k); - ref_rho = reshape(dlmread(strcat(testFolder,'rho'), delimiter), m, m, k); - ref_pi = dlmread(strcat(testFolder,'pi'), delimiter); - ref_LLF = dlmread(strcat(testFolder,'LLF'), delimiter); - ref_S = reshape(dlmread(strcat(testFolder,'S'), delimiter), p, m, k); - - %check that output correspond to stored output - tol = 1e-5; - checkOutput('phi',phi,ref_phi,tol); - checkOutput('rho',rho,ref_rho,tol); - checkOutput('pi',pi,ref_pi,tol); - checkOutput('LLF',LLF,ref_LLF,tol); - checkOutput('S',S,ref_S,tol); - -end diff --git a/src/test/OLD_TEST_MATLAB/testSelectiontotale.m b/src/test/OLD_TEST_MATLAB/testSelectiontotale.m deleted file mode 100644 index 996017f..0000000 --- a/src/test/OLD_TEST_MATLAB/testSelectiontotale.m +++ /dev/null @@ -1,44 +0,0 @@ -function[] = testSelectiontotale() - - testFolder = 'data/'; - delimiter = '\n'; - - %get dimensions - dimensions = dlmread(strcat(testFolder,'dimensions'), delimiter); - n = dimensions(1); - p = dimensions(2); - m = dimensions(3); - k = dimensions(4); - L = dimensions(5); - - %get all input arrays - phiInit = reshape(dlmread(strcat(testFolder,'phiInit'), delimiter), p, m, k); - rhoInit = reshape(dlmread(strcat(testFolder,'rhoInit'), delimiter), m, m, k); - piInit = transpose(dlmread(strcat(testFolder,'piInit'), delimiter)); - gamInit = reshape(dlmread(strcat(testFolder,'gamInit'), delimiter), n, k); - mini = int64(dlmread(strcat(testFolder,'mini'), delimiter)); - maxi = int64(dlmread(strcat(testFolder,'maxi'), delimiter)); - gamma = dlmread(strcat(testFolder,'gamma'), delimiter); - glambda = dlmread(strcat(testFolder,'glambda'), delimiter); - X = reshape(dlmread(strcat(testFolder,'X'), delimiter), n, p); - Y = reshape(dlmread(strcat(testFolder,'Y'), delimiter), n, m); - seuil = dlmread(strcat(testFolder,'seuil'), delimiter); - tau = dlmread(strcat(testFolder,'tau'), delimiter); - - %run constructionModelesLassoMLE.m - [A1,A2,Rho,Pi] = selectiontotale(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,glambda,X,Y,seuil,tau); - - %get all stored outputs - ref_A1 = int64(reshape(dlmread(strcat(testFolder,'A1'), delimiter), p, m+1, L)); - ref_A2 = int64(reshape(dlmread(strcat(testFolder,'A2'), delimiter), p, m+1, L)); - ref_Rho = reshape(dlmread(strcat(testFolder,'Rho'), delimiter), m, m, k, L); - ref_Pi = reshape(dlmread(strcat(testFolder,'Pi'), delimiter), k, L); - - %check that output correspond to stored output - tol = 1e-5; - checkOutput('A1',A1,ref_A1,tol); - checkOutput('A2',A2,ref_A2,tol); - checkOutput('Rho',Rho,ref_Rho,tol); - checkOutput('Pi',Pi,ref_Pi,tol); - -end diff --git a/src/test/generate_test_data/MATLAB_test_helpers/EMGLLF.m b/src/test/generate_test_data/MATLAB_test_helpers/EMGLLF.m new file mode 100644 index 0000000..618ffba --- /dev/null +++ b/src/test/generate_test_data/MATLAB_test_helpers/EMGLLF.m @@ -0,0 +1,174 @@ +function[phi,rho,pi,LLF,S] = EMGLLF(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,lambda,X,Y,tau) + + %Get matrices dimensions + PI = 4.0 * atan(1.0); + n = size(X, 1); + [p,m,k] = size(phiInit); + + %Initialize outputs + phi = phiInit; + rho = rhoInit; + pi = piInit; + LLF = zeros(maxi,1); + S = zeros(p,m,k); + + %Other local variables + %NOTE: variables order is always n,p,m,k + gam = gamInit; + Gram2 = zeros(p,p,k); + ps2 = zeros(p,m,k); + b = zeros(k,1); + pen = zeros(maxi,k); + X2 = zeros(n,p,k); + Y2 = zeros(n,m,k); + dist = 0; + dist2 = 0; + ite = 1; + pi2 = zeros(k,1); + ps = zeros(m,k); + nY2 = zeros(m,k); + ps1 = zeros(n,m,k); + nY21 = zeros(n,m,k); + Gam = zeros(n,k); + EPS = 1e-15; + + while ite<=mini || (ite<=maxi && (dist>=tau || dist2>=sqrt(tau))) + + Phi = phi; + Rho = rho; + Pi = pi; + + %Calculs associés à Y et X + for r=1:k + for mm=1:m + Y2(:,mm,r) = sqrt(gam(:,r)) .* Y(:,mm); + end + for i=1:n + X2(i,:,r) = X(i,:) .* sqrt(gam(i,r)); + end + for mm=1:m + ps2(:,mm,r) = transpose(X2(:,:,r)) * Y2(:,mm,r); + end + for j=1:p + for s=1:p + Gram2(j,s,r) = dot(X2(:,j,r), X2(:,s,r)); + end + end + end + + %%%%%%%%%% + %Etape M % + %%%%%%%%%% + + %Pour pi + for r=1:k + b(r) = sum(sum(abs(phi(:,:,r)))); + end + gam2 = sum(gam,1); + a = sum(gam*transpose(log(pi))); + + %tant que les proportions sont negatives + kk = 0; + pi2AllPositive = false; + while ~pi2AllPositive + pi2 = pi + 0.1^kk * ((1/n)*gam2 - pi); + pi2AllPositive = true; + for r=1:k + if pi2(r) < 0 + pi2AllPositive = false; + break; + end + end + kk = kk+1; + end + + %t(m) la plus grande valeur dans la grille O.1^k tel que ce soit + %décroissante ou constante + while (-1/n*a+lambda*((pi.^gamma)*b))<(-1/n*gam2*transpose(log(pi2))+lambda.*(pi2.^gamma)*b) && kk<1000 + pi2 = pi+0.1^kk*(1/n*gam2-pi); + kk = kk+1; + end + t = 0.1^(kk); + pi = (pi+t*(pi2-pi)) / sum(pi+t*(pi2-pi)); + + %Pour phi et rho + for r=1:k + for mm=1:m + for i=1:n + ps1(i,mm,r) = Y2(i,mm,r) * dot(X2(i,:,r), phi(:,mm,r)); + nY21(i,mm,r) = (Y2(i,mm,r))^2; + end + ps(mm,r) = sum(ps1(:,mm,r)); + nY2(mm,r) = sum(nY21(:,mm,r)); + rho(mm,mm,r) = ((ps(mm,r)+sqrt(ps(mm,r)^2+4*nY2(mm,r)*(gam2(r))))/(2*nY2(mm,r))); + end + end + for r=1:k + for j=1:p + for mm=1:m + S(j,mm,r) = -rho(mm,mm,r)*ps2(j,mm,r) + dot(phi(1:j-1,mm,r),Gram2(j,1:j-1,r)')... + + dot(phi(j+1:p,mm,r),Gram2(j,j+1:p,r)'); + if abs(S(j,mm,r)) <= n*lambda*(pi(r)^gamma) + phi(j,mm,r)=0; + else + if S(j,mm,r)> n*lambda*(pi(r)^gamma) + phi(j,mm,r)=(n*lambda*(pi(r)^gamma)-S(j,mm,r))/Gram2(j,j,r); + else + phi(j,mm,r)=-(n*lambda*(pi(r)^gamma)+S(j,mm,r))/Gram2(j,j,r); + end + end + end + end + end + + %%%%%%%%%% + %Etape E % + %%%%%%%%%% + + sumLogLLF2 = 0.0; + for i=1:n + %precompute dot products to numerically adjust their values + dotProducts = zeros(k,1); + for r=1:k + dotProducts(r)= (Y(i,:)*rho(:,:,r)-X(i,:)*phi(:,:,r)) * transpose(Y(i,:)*rho(:,:,r)-X(i,:)*phi(:,:,r)); + end + shift = 0.5*min(dotProducts); + + %compute Gam(:,:) using shift determined above + sumLLF1 = 0.0; + for r=1:k + Gam(i,r) = pi(r)*det(rho(:,:,r))*exp(-0.5*dotProducts(r) + shift); + sumLLF1 = sumLLF1 + Gam(i,r)/(2*PI)^(m/2); + end + sumLogLLF2 = sumLogLLF2 + log(sumLLF1); + sumGamI = sum(Gam(i,:)); + if sumGamI > EPS + gam(i,:) = Gam(i,:) / sumGamI; + else + gam(i,:) = zeros(k,1); + end + end + + sumPen = 0.0; + for r=1:k + sumPen = sumPen + pi(r).^gamma .* b(r); + end + LLF(ite) = -(1/n)*sumLogLLF2 + lambda*sumPen; + + if ite == 1 + dist = LLF(ite); + else + dist = (LLF(ite)-LLF(ite-1))/(1+abs(LLF(ite))); + end + + Dist1=max(max(max((abs(phi-Phi))./(1+abs(phi))))); + Dist2=max(max(max((abs(rho-Rho))./(1+abs(rho))))); + Dist3=max(max((abs(pi-Pi))./(1+abs(Pi)))); + dist2=max([Dist1,Dist2,Dist3]); + + ite=ite+1; + end + + pi = transpose(pi); + +end diff --git a/src/test/generate_test_data/MATLAB_test_helpers/EMGrank.m b/src/test/generate_test_data/MATLAB_test_helpers/EMGrank.m new file mode 100644 index 0000000..76074b7 --- /dev/null +++ b/src/test/generate_test_data/MATLAB_test_helpers/EMGrank.m @@ -0,0 +1,69 @@ +function[phi,LLF] = EMGrank(Pi,Rho,mini,maxi,X,Y,tau,rank) + + % get matrix sizes + [~,m,k] = size(Rho); + [n,p] = size(X); + + % allocate output matrices + phi = zeros(p,m,k); + Z = ones(n,1,'int64'); + LLF = 0.0; + + % local variables + Phi = zeros(p,m,k); + deltaPhi = 0.0; + deltaPhi = []; + sumDeltaPhi = 0.0; + deltaPhiBufferSize = 20; + + %main loop (at least mini iterations) + ite = int64(1); + while ite<=mini || (ite<=maxi && sumDeltaPhi>tau) + + %M step: Mise à jour de Beta (et donc phi) + for r=1:k + if (sum(Z==r) == 0) + continue; + end + %U,S,V = SVD of (t(Xr)Xr)^{-1} * t(Xr) * Yr + [U,S,V] = svd(pinv(transpose(X(Z==r,:))*X(Z==r,:))*transpose(X(Z==r,:))*Y(Z==r,:)); + %Set m-rank(r) singular values to zero, and recompose + %best rank(r) approximation of the initial product + S(rank(r)+1:end,:) = 0; + phi(:,:,r) = U * S * transpose(V) * Rho(:,:,r); + end + + %Etape E et calcul de LLF + sumLogLLF2 = 0.0; + for i=1:n + sumLLF1 = 0.0; + maxLogGamIR = -Inf; + for r=1:k + dotProduct = (Y(i,:)*Rho(:,:,r)-X(i,:)*phi(:,:,r)) * transpose(Y(i,:)*Rho(:,:,r)-X(i,:)*phi(:,:,r)); + logGamIR = log(Pi(r)) + log(det(Rho(:,:,r))) - 0.5*dotProduct; + %Z(i) = index of max (gam(i,:)) + if logGamIR > maxLogGamIR + Z(i) = r; + maxLogGamIR = logGamIR; + end + sumLLF1 = sumLLF1 + exp(logGamIR) / (2*pi)^(m/2); + end + sumLogLLF2 = sumLogLLF2 + log(sumLLF1); + end + + LLF = -1/n * sumLogLLF2; + + % update distance parameter to check algorithm convergence (delta(phi, Phi)) + deltaPhi = [ deltaPhi, max(max(max((abs(phi-Phi))./(1+abs(phi))))) ]; + if length(deltaPhi) > deltaPhiBufferSize + deltaPhi = deltaPhi(2:length(deltaPhi)); + end + sumDeltaPhi = sum(abs(deltaPhi)); + + % update other local variables + Phi = phi; + ite = ite+1; + + end + +end diff --git a/src/test/generate_test_data/MATLAB_test_helpers/Octave.m b/src/test/generate_test_data/MATLAB_test_helpers/Octave.m new file mode 100644 index 0000000..8f105d2 --- /dev/null +++ b/src/test/generate_test_data/MATLAB_test_helpers/Octave.m @@ -0,0 +1,5 @@ +% Run this file if using Octave +if exist('OCTAVE_VERSION', 'builtin') ~= 0 + pkg load statistics %for random() + more off %to prevent bufferizing output +end diff --git a/src/test/generate_test_data/MATLAB_test_helpers/README b/src/test/generate_test_data/MATLAB_test_helpers/README new file mode 100644 index 0000000..e94c0a0 --- /dev/null +++ b/src/test/generate_test_data/MATLAB_test_helpers/README @@ -0,0 +1 @@ +Subset of select/ project: only files required to generate tests outputs diff --git a/src/test/OLD_TEST_MATLAB/basicInitParameters.m b/src/test/generate_test_data/MATLAB_test_helpers/basicInitParameters.m similarity index 100% rename from src/test/OLD_TEST_MATLAB/basicInitParameters.m rename to src/test/generate_test_data/MATLAB_test_helpers/basicInitParameters.m diff --git a/src/test/generate_test_data/MATLAB_test_helpers/constructionModelesLassoMLE.m b/src/test/generate_test_data/MATLAB_test_helpers/constructionModelesLassoMLE.m new file mode 100644 index 0000000..5b7c65e --- /dev/null +++ b/src/test/generate_test_data/MATLAB_test_helpers/constructionModelesLassoMLE.m @@ -0,0 +1,58 @@ +function[phi,rho,pi,lvraisemblance] = constructionModelesLassoMLE(... + phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,glambda,X,Y,seuil,tau,A1,A2) + + PI = 4.0 * atan(1.0); + + %get matrix sizes + n = size(X, 1); + [p,m,k] = size(phiInit); + L = length(glambda); + + %output parameters + phi = zeros(p,m,k,L); + rho = zeros(m,m,k,L); + pi = zeros(k,L); + lvraisemblance = zeros(L,2); + + for lambdaIndex=1:L + % Procedure Lasso-MLE + a = A1(:,1,lambdaIndex); + a(a==0) = []; + if length(a) == 0 + continue; + end + [phiLambda,rhoLambda,piLambda,~,~] = EMGLLF(... + phiInit(a,:,:),rhoInit,piInit,gamInit,mini,maxi,gamma,0,X(:,a),Y,tau); + + for j=1:length(a) + phi(a(j),:,:,lambdaIndex) = phiLambda(j,:,:); + end + rho(:,:,:,lambdaIndex) = rhoLambda; + pi(:,lambdaIndex) = piLambda; + + dimension = 0; + for j=1:p + b = A2(j,2:end,lambdaIndex); + b(b==0) = []; + if length(b) > 0 + phi(A2(j,1,lambdaIndex),b,:,lambdaIndex) = 0.0; + end + c = A1(j,2:end,lambdaIndex); + c(c==0) = []; + dimension = dimension + length(c); + end + + %on veut calculer l'EMV avec toutes nos estimations + densite = zeros(n,L); + for i=1:n + for r=1:k + delta = Y(i,:)*rho(:,:,r,lambdaIndex) - (X(i,a)*(phi(a,:,r,lambdaIndex))); + densite(i,lambdaIndex) = densite(i,lambdaIndex) +... + pi(r,lambdaIndex)*det(rho(:,:,r,lambdaIndex))/(sqrt(2*PI))^m*exp(-dot(delta,delta)/2.0); + end + end + lvraisemblance(lambdaIndex,1) = sum(log(densite(:,lambdaIndex))); + lvraisemblance(lambdaIndex,2) = (dimension+m+1)*k-1; + end + +end diff --git a/src/test/generate_test_data/MATLAB_test_helpers/constructionModelesLassoRank.m b/src/test/generate_test_data/MATLAB_test_helpers/constructionModelesLassoRank.m new file mode 100644 index 0000000..415ab12 --- /dev/null +++ b/src/test/generate_test_data/MATLAB_test_helpers/constructionModelesLassoRank.m @@ -0,0 +1,40 @@ +function[phi,lvraisemblance] = constructionModelesLassoRank(Pi,Rho,mini,maxi,X,Y,tau,A1,rangmin,rangmax) + + PI = 4.0 * atan(1.0); + + %get matrix sizes + [n,p] = size(X); + [~,m,k,~] = size(Rho); + L = size(A1, 2); %A1 est p x m+1 x L ou p x L ?! + + %On cherche les rangs possiblement intéressants + deltaRank = rangmax - rangmin + 1; + Size = deltaRank^k; + Rank = zeros(Size,k,'int64'); + for r=1:k + %On veut le tableau de toutes les combinaisons de rangs possibles + %Dans la première colonne : on répète (rangmax-rangmin)^(k-1) chaque chiffre : ca remplit la colonne + %Dans la deuxieme : on répète (rangmax-rangmin)^(k-2) chaque chiffre, et on fait ca (rangmax-rangmin)^2 fois + %... + %Dans la dernière, on répète chaque chiffre une fois, et on fait ca (rangmin-rangmax)^(k-1) fois. + Rank(:,r) = rangmin + reshape(repmat(0:(deltaRank-1), deltaRank^(k-r), deltaRank^(r-1)), Size, 1); + end + + %output parameters + phi = zeros(p,m,k,L*Size); + lvraisemblance = zeros(L*Size,2); + for lambdaIndex=1:L + %On ne garde que les colonnes actives + %active sera l'ensemble des variables informatives + active = A1(:,lambdaIndex); + active(active==0) = []; + if length(active) > 0 + for j=1:Size + [phiLambda,LLF] = EMGrank(Pi(:,lambdaIndex),Rho(:,:,:,lambdaIndex),mini,maxi,X(:,active),Y,tau,Rank(j,:)); + lvraisemblance((lambdaIndex-1)*Size+j,:) = [LLF, sum(Rank(j,:) .* (length(active)-Rank(j,:)+m))]; + phi(active,:,:,(lambdaIndex-1)*Size+j) = phiLambda; + end + end + end + +end diff --git a/src/test/OLD_TEST_MATLAB/covariance.m b/src/test/generate_test_data/MATLAB_test_helpers/covariance.m similarity index 100% rename from src/test/OLD_TEST_MATLAB/covariance.m rename to src/test/generate_test_data/MATLAB_test_helpers/covariance.m diff --git a/src/test/OLD_TEST_MATLAB/generateIO.m b/src/test/generate_test_data/MATLAB_test_helpers/generateIO.m similarity index 100% rename from src/test/OLD_TEST_MATLAB/generateIO.m rename to src/test/generate_test_data/MATLAB_test_helpers/generateIO.m diff --git a/src/test/OLD_TEST_MATLAB/generateIOdefault.m b/src/test/generate_test_data/MATLAB_test_helpers/generateIOdefault.m similarity index 100% rename from src/test/OLD_TEST_MATLAB/generateIOdefault.m rename to src/test/generate_test_data/MATLAB_test_helpers/generateIOdefault.m diff --git a/src/test/generate_test_data/MATLAB_test_helpers/selectiontotale.m b/src/test/generate_test_data/MATLAB_test_helpers/selectiontotale.m new file mode 100644 index 0000000..5d36a96 --- /dev/null +++ b/src/test/generate_test_data/MATLAB_test_helpers/selectiontotale.m @@ -0,0 +1,54 @@ +function[A1,A2,Rho,Pi] = selectiontotale(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,glambda,X,Y,seuil,tau) + + [p,m,k] = size(phiInit); + L = length(glambda); + A1 = zeros(p,m+1,L,'int64'); + A2 = zeros(p,m+1,L,'int64'); + Rho = zeros(m,m,k,L); + Pi = zeros(k,L); + + %Pour chaque lambda de la grille, on calcule les coefficients + for lambdaIndex=1:L + [phi,rho,pi,~,~] = EMGLLF(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,glambda(lambdaIndex),X,Y,tau); + + %Si un des coefficients est supérieur au seuil, on garde cette variable + selectedVariables = zeros(p,m); + discardedVariables = zeros(p,m); + atLeastOneSelectedVariable = false; + for j=1:p + cpt=1; + cpt2=1; + for mm=1:m + if max(abs(phi(j,mm,:))) > seuil + selectedVariables(j,cpt) = mm; + cpt = cpt+1; + atLeastOneSelectedVariable = true; + else + discardedVariables(j,cpt2) = mm; + cpt2 = cpt2+1; + end + end + end + + %Si aucun des coefficients n'a été gardé on renvoit la matrice nulle + %Et si on enlevait ces colonnes de zéro ??? Indices des colonnes vides + if atLeastOneSelectedVariable + vec = []; + for j=1:p + if selectedVariables(j,1) ~= 0 + vec = [vec;j]; + end + end + + %Sinon on renvoit les numéros des coefficients utiles + A1(:,1,lambdaIndex) = [vec;zeros(p-length(vec),1)]; + A1(1:length(vec),2:m+1,lambdaIndex) = selectedVariables(vec,:); + A2(:,1,lambdaIndex) = 1:p; + A2(:,2:m+1,lambdaIndex) = discardedVariables; + Rho(:,:,:,lambdaIndex) = rho; + Pi(:,lambdaIndex) = pi; + end + + end + +end diff --git a/src/test/TEST R/checkOutput.R b/src/test/generate_test_data/R_test_helpers/checkOutput.R similarity index 100% rename from src/test/TEST R/checkOutput.R rename to src/test/generate_test_data/R_test_helpers/checkOutput.R diff --git a/src/test/TEST R/covariance.R b/src/test/generate_test_data/R_test_helpers/covariance.R similarity index 100% rename from src/test/TEST R/covariance.R rename to src/test/generate_test_data/R_test_helpers/covariance.R diff --git a/src/test/TEST R/testEMGLLF.R b/src/test/generate_test_data/R_test_helpers/testEMGLLF.R similarity index 100% rename from src/test/TEST R/testEMGLLF.R rename to src/test/generate_test_data/R_test_helpers/testEMGLLF.R diff --git a/src/test/OLD_TEST_MATLAB/generateRunSaveTest_EMGLLF.m b/src/test/generate_test_data/generateRunSaveTest_EMGLLF.m similarity index 98% rename from src/test/OLD_TEST_MATLAB/generateRunSaveTest_EMGLLF.m rename to src/test/generate_test_data/generateRunSaveTest_EMGLLF.m index bf0badf..b668a57 100644 --- a/src/test/OLD_TEST_MATLAB/generateRunSaveTest_EMGLLF.m +++ b/src/test/generate_test_data/generateRunSaveTest_EMGLLF.m @@ -19,7 +19,7 @@ function[] = generateRunSaveTest_EMGLLF(n, p, m, k, mini, maxi, gamma, lambda, v testFolder = 'data/'; mkdir(testFolder); - delimiter = '\n'; + delimiter = ' '; %save inputs dlmwrite(strcat(testFolder,'phiInit'), reshape(phiInit,1,[]), delimiter); diff --git a/src/test/generate_test_data/generateRunSaveTest_EMGrank.m b/src/test/generate_test_data/generateRunSaveTest_EMGrank.m new file mode 100644 index 0000000..2301aa5 --- /dev/null +++ b/src/test/generate_test_data/generateRunSaveTest_EMGrank.m @@ -0,0 +1,45 @@ +function[] = generateRunSaveTest_EMGrank(n, p, m, k, mini, maxi, gamma, rank, varargin) + + %set defaults for optional inputs + optargs = {200 15 10 3 5 10 1.0 1:3}; + %replace defaults by user parameters + optargs(1:length(varargin)) = varargin; + [n, p, m, k, mini, maxi, gamma, rank] = optargs{:}; + mini = int64(mini); + maxi = int64(maxi); + rank = int64(rank); + tau = 1e-6; + + Pi = (1.0/k)*ones(1,k); + Rho = zeros(m,m,k); + for r=1:k + Rho(:,:,r) = eye(m); + end + + %Generate X and Y + [X, Y, ~] = generateIOdefault(n, p, m, k); + + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + + testFolder = 'data/'; + mkdir(testFolder); + delimiter = ' '; + + %save inputs + dlmwrite(strcat(testFolder,'Rho'), reshape(Rho,1,[]), delimiter); + dlmwrite(strcat(testFolder,'Pi'), Pi, delimiter); + dlmwrite(strcat(testFolder,'mini'), mini, delimiter); + dlmwrite(strcat(testFolder,'maxi'), maxi, delimiter); + dlmwrite(strcat(testFolder,'X'), reshape(X,1,[]), delimiter); + dlmwrite(strcat(testFolder,'Y'), reshape(Y,1,[]), delimiter); + dlmwrite(strcat(testFolder,'tau'), tau, delimiter); + dlmwrite(strcat(testFolder,'rank'), rank, delimiter); + dlmwrite(strcat(testFolder,'dimensions'), [n,p,m,k], delimiter);; + + [phi,LLF] = EMGrank(Pi,Rho,mini,maxi,X,Y,tau,rank); + + %save output + dlmwrite(strcat(testFolder,'phi'), reshape(phi,1,[]), delimiter); + dlmwrite(strcat(testFolder,'LLF'), LLF, delimiter); + +end diff --git a/src/test/OLD_TEST_MATLAB/generateRunSaveTest_constructionModelesLassoMLE.m b/src/test/generate_test_data/generateRunSaveTest_constructionModelesLassoMLE.m similarity index 98% rename from src/test/OLD_TEST_MATLAB/generateRunSaveTest_constructionModelesLassoMLE.m rename to src/test/generate_test_data/generateRunSaveTest_constructionModelesLassoMLE.m index 6e48d45..0ba83c1 100644 --- a/src/test/OLD_TEST_MATLAB/generateRunSaveTest_constructionModelesLassoMLE.m +++ b/src/test/generate_test_data/generateRunSaveTest_constructionModelesLassoMLE.m @@ -1,5 +1,5 @@ function[] = generateRunSaveTest_constructionModelesLassoMLE(n, p, m, k, mini, maxi, gamma, glambda, varargin) - + %set defaults for optional inputs optargs = {200 15 10 3 5 10 1.0 [0.0,0.01,0.02,0.03,0.05,0.1,0.2,0.3,0.5,0.7,0.85,0.99]}; %replace defaults by user parameters @@ -27,12 +27,12 @@ function[] = generateRunSaveTest_constructionModelesLassoMLE(n, p, m, k, mini, m A1(:,1,i) = 1:p; A1(1:5,2,i) = 1:5; end - + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% testFolder = 'data/'; mkdir(testFolder); - delimiter = '\n'; + delimiter = ' '; %save inputs dlmwrite(strcat(testFolder,'phiInit'), reshape(phiInit,1,[]), delimiter); diff --git a/src/test/generate_test_data/generateRunSaveTest_constructionModelesLassoRank.m b/src/test/generate_test_data/generateRunSaveTest_constructionModelesLassoRank.m new file mode 100644 index 0000000..80d9db3 --- /dev/null +++ b/src/test/generate_test_data/generateRunSaveTest_constructionModelesLassoRank.m @@ -0,0 +1,59 @@ +function[] = generateRunSaveTest_constructionModelesLassoRank(n, p, m, k, L, mini, maxi, gamma, rangmin, rangmax, varargin) + + %set defaults for optional inputs + optargs = {200 15 10 3 12 5 10 1.0 3 6}; + %replace defaults by user parameters + optargs(1:length(varargin)) = varargin; + [n, p, m, k, L, mini, maxi, gamma, rangmin, rangmax] = optargs{:}; + mini = int64(mini); + maxi = int64(maxi); + rangmin = int64(rangmin); + rangmax = int64(rangmax); + tau = 1e-6; + + Pi = zeros(k,L); + for l=1:L + Pi(:,l) = (1.0/k)*ones(1,k); + end + Rho = zeros(m,m,k,L); + for l=1:L + for r=1:k + Rho(:,:,r,l) = eye(m); + end + end + + %Generate X and Y + [X, Y, ~] = generateIOdefault(n, p, m, k); + + A1 = zeros(p,L,'int64'); + for i=1:L + A1(:,i) = 1:p; + end + + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + + testFolder = 'data/'; + mkdir(testFolder); + delimiter = ' '; + + %save inputs + dlmwrite(strcat(testFolder,'Rho'), reshape(Rho,1,[]), delimiter); + dlmwrite(strcat(testFolder,'Pi'), reshape(Pi,1,[]), delimiter); + dlmwrite(strcat(testFolder,'mini'), mini, delimiter); + dlmwrite(strcat(testFolder,'maxi'), maxi, delimiter); + dlmwrite(strcat(testFolder,'X'), reshape(X,1,[]), delimiter); + dlmwrite(strcat(testFolder,'Y'), reshape(Y,1,[]), delimiter); + dlmwrite(strcat(testFolder,'tau'), tau, delimiter); + dlmwrite(strcat(testFolder,'A1'), reshape(A1,1,[]), delimiter); + dlmwrite(strcat(testFolder,'rangmin'), rangmin, delimiter); + dlmwrite(strcat(testFolder,'rangmax'), rangmax, delimiter); + dlmwrite(strcat(testFolder,'dimensions'), [n,p,m,k,L], delimiter); + + [phi,lvraisemblance] = constructionModelesLassoRank(Pi,Rho,mini,maxi,X,Y,tau,A1,rangmin,rangmax); + + %save output + Size = (rangmax-rangmin+1)^k; + dlmwrite(strcat(testFolder,'phi'), reshape(phi,1,[]), delimiter); + dlmwrite(strcat(testFolder,'lvraisemblance'), reshape(lvraisemblance,1,[]), delimiter); + +end diff --git a/src/test/OLD_TEST_MATLAB/generateRunSaveTest_selectiontotale.m b/src/test/generate_test_data/generateRunSaveTest_selectiontotale.m similarity index 98% rename from src/test/OLD_TEST_MATLAB/generateRunSaveTest_selectiontotale.m rename to src/test/generate_test_data/generateRunSaveTest_selectiontotale.m index 6caee15..8985247 100644 --- a/src/test/OLD_TEST_MATLAB/generateRunSaveTest_selectiontotale.m +++ b/src/test/generate_test_data/generateRunSaveTest_selectiontotale.m @@ -13,7 +13,7 @@ function[] = generateRunSaveTest_selectiontotale(n, p, m, k, mini, maxi, gamma, %Generate phiInit,piInit,... [phiInit,rhoInit,piInit,gamInit] = basicInitParameters(n, p, m, k); - + %Generate X and Y [X, Y, ~] = generateIOdefault(n, p, m, k); @@ -21,7 +21,7 @@ function[] = generateRunSaveTest_selectiontotale(n, p, m, k, mini, maxi, gamma, testFolder = 'data/'; mkdir(testFolder); - delimiter = '\n'; + delimiter = ' '; %save inputs dlmwrite(strcat(testFolder,'phiInit'), reshape(phiInit,1,[]), delimiter);