From 64b28e3edeef11b4442b6014ec89246810ebc1cf Mon Sep 17 00:00:00 2001
From: emilie <emilie@devijver.org>
Date: Fri, 17 Mar 2017 13:13:40 +0100
Subject: [PATCH] essaiPlot almost ok : add a color per cluster? For now, it is
 a script

---
 pkg/R/constructionModelesLassoMLE.R | 53 +++++++++++++------------
 pkg/R/selectiontotale.R             |  1 +
 pkg/R/valse.R                       |  5 ++-
 reports/essai16mars.R               |  2 +-
 reports/essaiPlot.R                 | 60 +++++++++++++++++++++++++++++
 5 files changed, 94 insertions(+), 27 deletions(-)

diff --git a/pkg/R/constructionModelesLassoMLE.R b/pkg/R/constructionModelesLassoMLE.R
index f86e816..d2bb9a5 100644
--- a/pkg/R/constructionModelesLassoMLE.R
+++ b/pkg/R/constructionModelesLassoMLE.R
@@ -51,35 +51,38 @@ constructionModelesLassoMLE = function(phiInit,rhoInit,piInit,gamInit,mini,maxi,
     
     out = lapply( seq_along(selected), function(lambda)
     {
+      print(lambda)
       sel.lambda = selected[[lambda]]
       col.sel = which(colSums(sel.lambda)!=0)
-      res_EM = EMGLLF(phiInit[col.sel,,],rhoInit,piInit,gamInit,mini,maxi,gamma,0.,X[,col.sel],Y,tau)
-      phiLambda2 = res_EM$phi
-      rhoLambda = res_EM$rho
-      piLambda = res_EM$pi
-      for (j in 1:length(col.sel)){
-        phiLambda[col.sel[j],,] = phiLambda2[j,,]
-      }
-      
-      dimension = 0
-      for (j in 1:p){
-        b = setdiff(1:m, sel.lambda[,j])
-        if (length(b) > 0){
-          phiLambda[j,b,] = 0.0
+      if (length(col.sel)>0){
+        res_EM = EMGLLF(phiInit[col.sel,,],rhoInit,piInit,gamInit,mini,maxi,gamma,0.,X[,col.sel],Y,tau)
+        phiLambda2 = res_EM$phi
+        rhoLambda = res_EM$rho
+        piLambda = res_EM$pi
+        for (j in 1:length(col.sel)){
+          phiLambda[col.sel[j],,] = phiLambda2[j,,]
         }
-        dimension = dimension + sum(sel.lambda[,j]!=0)
-      }
-      
-      #on veut calculer la vraisemblance avec toutes nos estimations
-      densite = vector("double",n)
-      for (r in 1:k)
-      {
-        delta = Y%*%rhoLambda[,,r] - (X[, col.sel]%*%phiLambda[col.sel,,r])
-        densite = densite + piLambda[r] *
-          det(rhoLambda[,,r])/(sqrt(2*base::pi))^m * exp(-tcrossprod(delta)/2.0)
+        
+        dimension = 0
+        for (j in 1:p){
+          b = setdiff(1:m, sel.lambda[,j])
+          if (length(b) > 0){
+            phiLambda[j,b,] = 0.0
+          }
+          dimension = dimension + sum(sel.lambda[,j]!=0)
+        }
+        
+        #on veut calculer la vraisemblance avec toutes nos estimations
+        densite = vector("double",n)
+        for (r in 1:k)
+        {
+          delta = Y%*%rhoLambda[,,r] - (X[, col.sel]%*%phiLambda[col.sel,,r])
+          densite = densite + piLambda[r] *
+            det(rhoLambda[,,r])/(sqrt(2*base::pi))^m * exp(-tcrossprod(delta)/2.0)
+        }
+        llhLambda = c( sum(log(densite)), (dimension+m+1)*k-1 )
+        list("phi"= phiLambda, "rho"= rhoLambda, "pi"= piLambda, "llh" = llhLambda)
       }
-      llhLambda = c( sum(log(densite)), (dimension+m+1)*k-1 )
-      list("phi"= phiLambda, "rho"= rhoLambda, "pi"= piLambda, "llh" = llhLambda)
     }
     )
     return(out)
diff --git a/pkg/R/selectiontotale.R b/pkg/R/selectiontotale.R
index 25128cb..7209fed 100644
--- a/pkg/R/selectiontotale.R
+++ b/pkg/R/selectiontotale.R
@@ -32,6 +32,7 @@ selectiontotale = function(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,glambd
     cpt = 0
     #Pour chaque lambda de la grille, on calcule les coefficients
     for (lambdaIndex in 1:length(glambda)){
+      print(lambdaIndex)
       params = 
         EMGLLF(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,glambda[lambdaIndex],X,Y,tau)
       p = dim(phiInit)[1]
diff --git a/pkg/R/valse.R b/pkg/R/valse.R
index 779f61a..396a9a1 100644
--- a/pkg/R/valse.R
+++ b/pkg/R/valse.R
@@ -16,7 +16,7 @@
 #' @export
 #-----------------------------------------------------------------------
 valse = function(X,Y,procedure = 'LassoMLE',selecMod = 'DDSE',gamma = 1,mini = 10,
-                 maxi = 100,eps = 1e-4,kmin = 2,kmax = 3,
+                 maxi = 50,eps = 1e-4,kmin = 2,kmax = 3,
                  rang.min = 1,rang.max = 10) {
   ##################################
   #core workflow: compute all models
@@ -45,6 +45,9 @@ valse = function(X,Y,procedure = 'LassoMLE',selecMod = 'DDSE',gamma = 1,mini = 1
     source('~/valse/pkg/R/gridLambda.R')
     grid_lambda <<- gridLambda(phiInit, rhoInit, piInit, gamInit, X, Y, gamma, mini, maxi, eps)
     
+    if (length(grid_lambda)>50){
+      grid_lambda = grid_lambda[seq(1, length(grid_lambda), length.out = 50)]
+    }
     print("Compute relevant parameters")
     #select variables according to each regularization parameter
     #from the grid: A1 corresponding to selected variables, and
diff --git a/reports/essai16mars.R b/reports/essai16mars.R
index 416f895..88659ab 100644
--- a/reports/essai16mars.R
+++ b/reports/essai16mars.R
@@ -1,5 +1,5 @@
 p = 10
-q = 15
+q = 8
 k = 2
 D = 20
 
diff --git a/reports/essaiPlot.R b/reports/essaiPlot.R
index e69de29..dea7e00 100644
--- a/reports/essaiPlot.R
+++ b/reports/essaiPlot.R
@@ -0,0 +1,60 @@
+### Regression matrices
+model = res_valse
+K = dim(model$phi)[3]
+valMax = max(abs(model$phi))
+
+require(fields)
+if (K<4){
+  par(mfrow = c(1,K))
+} else par(mfrow = c(2, (K+1)/2))
+
+for (r in 1:K){
+  image.plot(t(abs(model$phi[,,r])), 
+             col=gray(rev(seq(0,64,length.out=65))/65),breaks=seq(0,valMax,length.out=66))
+}
+
+### Zoom onto two classes we want to compare 
+kSel = c(1,2)
+par(mfrow = c(1,3))
+
+for (r in kSel){
+  image.plot(t(abs(model$phi[,,r])),title="hat{beta}",xaxt="n",yaxt="n", 
+             col=gray(rev(seq(0,64,length.out=65))/65),breaks=seq(0,valMax,length.out=66))
+}
+image.plot(t(abs(model$phi[,,kSel[1]]-model$phi[,,kSel[2]])), 
+           col=gray(rev(seq(0,64,length.out=65))/65),breaks=seq(0,valMax,length.out=66))
+
+### Covariance matrices
+par(mfrow = c(K, 1))
+for (r in 1:K){
+  image.plot(matrix(diag(model$rho[,,r]), ncol= 1), 
+             col=gray(rev(seq(0,64,length.out=65))/65),breaks=seq(0,valMax,length.out=66))
+}
+
+### proportions
+Gam = matrix(0, ncol = K, nrow = n)
+gam  = Gam
+for (i in 1:n){
+  for (r in 1:k){
+    sqNorm2 = sum( (Y[i,]%*%model$rho[,,r]-X[i,]%*%model$phi[,,r])^2 )
+    Gam[i,r] = model$pi[r] * exp(-0.5*sqNorm2)* det(model$rho[,,r])
+  }
+  gam[i,] = Gam[i,] / sum(Gam[i,])
+}
+affec = apply(gam, 1,which.max)
+gam2 = matrix(NA, ncol = K, nrow = n)
+for (i in 1:n){
+  gam2[i, affec[i]] = gam[i, affec[i]]
+}
+boxplot(gam2)
+
+### Mean in each cluster
+XY = cbind(X,Y)
+XY_class= list()
+meanPerClass= matrix(0, ncol = K, nrow = dim(XY)[2])
+for (r in 1:K){
+  XY_class[[r]] = XY[affec == r, ]
+  meanPerClass[,r] = apply(XY_class[[r]], 2, mean)
+}
+
+matplot(meanPerClass, type='l')
\ No newline at end of file
-- 
2.44.0