From: Benjamin Auder Date: Tue, 25 Apr 2023 07:48:36 +0000 (+0200) Subject: Preparing for CRAN upload X-Git-Url: https://git.auder.net/variants/current/doc/css/img/assets/index.css?a=commitdiff_plain;h=16906f6e8c432b811ddf99da1b18a2a357a75235;p=agghoo.git Preparing for CRAN upload --- diff --git a/.gitignore b/.gitignore index 812f17e..ae9cf7e 100644 --- a/.gitignore +++ b/.gitignore @@ -1,3 +1,2 @@ -/data/ -/doc/ +/man/ .RData diff --git a/R/compareTo.R b/R/compareTo.R index fe5b24d..0eb517c 100644 --- a/R/compareTo.R +++ b/R/compareTo.R @@ -203,7 +203,6 @@ compareTo <- function( compareMulti <- function( data, target, method_s, N=100, nc=NA, floss=NULL, verbose=TRUE, ... ) { - base::require(parallel) if (is.na(nc)) nc <- parallel::detectCores() diff --git a/agghoo.Rcheck/00_pkg_src/agghoo/DESCRIPTION b/agghoo.Rcheck/00_pkg_src/agghoo/DESCRIPTION deleted file mode 100644 index 21f9ca3..0000000 --- a/agghoo.Rcheck/00_pkg_src/agghoo/DESCRIPTION +++ /dev/null @@ -1,26 +0,0 @@ -Package: agghoo -Title: Aggregated Hold-Out Cross Validation -Date: 2022-08-30 -Version: 0.1-0 -Description: The 'agghoo' procedure is an alternative to usual cross-validation. - Instead of choosing the best model trained on V subsamples, it determines - a winner model for each subsample, and then aggregate the V outputs. - For the details, see "Aggregated hold-out" by Guillaume Maillard, - Sylvain Arlot, Matthieu Lerasle (2021) - published in Journal of Machine Learning Research 22(20):1--55. -Author: Sylvain Arlot [cph,ctb], - Benjamin Auder [aut,cre,cph], - Melina Gallopin [cph,ctb], - Matthieu Lerasle [cph,ctb], - Guillaume Maillard [cph,ctb] -Maintainer: Benjamin Auder -Depends: R (>= 3.5.0) -Imports: class, parallel, R6, rpart, FNN -Suggests: roxygen2 -URL: https://git.auder.net/?p=agghoo.git -License: MIT + file LICENSE -RoxygenNote: 7.2.1 -Collate: 'compareTo.R' 'agghoo.R' 'R6_AgghooCV.R' 'R6_Model.R' - 'checks.R' 'utils.R' 'A_NAMESPACE.R' -NeedsCompilation: no -Packaged: 2022-09-09 15:45:56 UTC; auder diff --git a/agghoo.Rcheck/00_pkg_src/agghoo/LICENSE b/agghoo.Rcheck/00_pkg_src/agghoo/LICENSE deleted file mode 100644 index 094ff81..0000000 --- a/agghoo.Rcheck/00_pkg_src/agghoo/LICENSE +++ /dev/null @@ -1,2 +0,0 @@ -YEAR: 2021-2022 -COPYRIGHT HOLDER: Sylvain Arlot, Benjamin Auder, Melina Gallopin, Matthieu Lerasle, Guillaume Maillard diff --git a/agghoo.Rcheck/00_pkg_src/agghoo/NAMESPACE b/agghoo.Rcheck/00_pkg_src/agghoo/NAMESPACE deleted file mode 100644 index 7bbddef..0000000 --- a/agghoo.Rcheck/00_pkg_src/agghoo/NAMESPACE +++ /dev/null @@ -1,13 +0,0 @@ -# Generated by roxygen2: do not edit by hand - -export(AgghooCV) -export(Model) -export(agghoo) -export(compareMulti) -export(compareRange) -export(compareTo) -importFrom(FNN,knn.reg) -importFrom(R6,R6Class) -importFrom(class,knn) -importFrom(rpart,rpart) -importFrom(stats,ppr) diff --git a/agghoo.Rcheck/00_pkg_src/agghoo/R/A_NAMESPACE.R b/agghoo.Rcheck/00_pkg_src/agghoo/R/A_NAMESPACE.R deleted file mode 100644 index 0466833..0000000 --- a/agghoo.Rcheck/00_pkg_src/agghoo/R/A_NAMESPACE.R +++ /dev/null @@ -1,7 +0,0 @@ -#' @include utils.R -#' @include checks.R -#' @include R6_Model.R -#' @include R6_AgghooCV.R -#' @include agghoo.R -#' @include compareTo.R -NULL diff --git a/agghoo.Rcheck/00_pkg_src/agghoo/R/R6_AgghooCV.R b/agghoo.Rcheck/00_pkg_src/agghoo/R/R6_AgghooCV.R deleted file mode 100644 index 328c141..0000000 --- a/agghoo.Rcheck/00_pkg_src/agghoo/R/R6_AgghooCV.R +++ /dev/null @@ -1,115 +0,0 @@ -#' @title R6 class with agghoo functions fit() and predict(). -#' -#' @description -#' Class encapsulating the methods to run to obtain the best predictor -#' from the list of models (see 'Model' class). -#' -#' @importFrom R6 R6Class -#' -#' @export -AgghooCV <- R6::R6Class("AgghooCV", - public = list( - #' @description Create a new AgghooCV object. - #' @param data Matrix or data.frame - #' @param target Vector of targets (generally numeric or factor) - #' @param task "regression" or "classification". - #' Default: classification if target not numeric. - #' @param gmodel Generic model returning a predictive function - #' Default: tree if mixed data, knn/ppr otherwise. - #' @param loss Function assessing the error of a prediction - #' Default: error rate or mean(abs(error)). - initialize = function(data, target, task, gmodel, loss) { - private$data <- data - private$target <- target - private$task <- task - private$gmodel <- gmodel - private$loss <- loss - }, - #' @description Fit an agghoo model. - #' @param CV List describing cross-validation to run. Slots: \cr - #' - type: 'vfold' or 'MC' for Monte-Carlo (default: MC) \cr - #' - V: number of runs (default: 10) \cr - #' - test_size: percentage of data in the test dataset, for MC - #' (irrelevant for V-fold). Default: 0.2. \cr - #' - shuffle: wether or not to shuffle data before V-fold. - #' Irrelevant for Monte-Carlo; default: TRUE \cr - #' Default (if NULL): type="MC", V=10, test_size=0.2 - fit = function(CV = NULL) { - CV <- checkCV(CV) - n <- nrow(private$data) - shuffle_inds <- NULL - if (CV$type == "vfold" && CV$shuffle) - shuffle_inds <- sample(n, n) - # Result: list of V predictive models (+ parameters for info) - private$pmodels <- list() - for (v in seq_len(CV$V)) { - # Prepare train / test data and target, from full dataset. - # dataHO: "data Hold-Out" etc. - test_indices <- get_testIndices(n, CV, v, shuffle_inds) - d <- splitTrainTest(private$data, private$target, test_indices) - best_model <- NULL - best_error <- Inf - for (p in seq_len(private$gmodel$nmodels)) { - model_pred <- private$gmodel$get(d$dataTrain, d$targetTrain, p) - prediction <- model_pred(d$dataTest) - error <- private$loss(prediction, d$targetTest) - if (error <= best_error) { - newModel <- list(model=model_pred, param=private$gmodel$getParam(p)) - if (error == best_error) - best_model[[length(best_model)+1]] <- newModel - else { - best_model <- list(newModel) - best_error <- error - } - } - } - # Choose a model at random in case of ex-aequos - private$pmodels[[v]] <- best_model[[ sample(length(best_model),1) ]] - } - }, - #' @description Predict an agghoo model (after calling fit()) - #' @param X Matrix or data.frame to predict - predict = function(X) { - if (!is.matrix(X) && !is.data.frame(X)) - stop("X: matrix or data.frame") - if (!is.list(private$pmodels)) { - print("Please call $fit() method first") - return (invisible(NULL)) - } - V <- length(private$pmodels) - oneLineX <- X[1,] - if (is.matrix(X)) - # HACK: R behaves differently with data frames and matrices. - oneLineX <- t(as.matrix(oneLineX)) - if (length(private$pmodels[[1]]$model(oneLineX)) >= 2) - # Soft classification: - return (Reduce("+", lapply(private$pmodels, function(m) m$model(X))) / V) - n <- nrow(X) - all_predictions <- as.data.frame(matrix(nrow=n, ncol=V)) - for (v in 1:V) - all_predictions[,v] <- private$pmodels[[v]]$model(X) - if (private$task == "regression") - # Easy case: just average each row - return (rowMeans(all_predictions)) - # "Hard" classification: - apply(all_predictions, 1, function(row) { - t <- table(row) - # Next lines in case of ties (broken at random) - tmax <- max(t) - sample( names(t)[which(t == tmax)], 1 ) - }) - }, - #' @description Return the list of V best parameters (after calling fit()) - getParams = function() { - lapply(private$pmodels, function(m) m$param) - } - ), - private = list( - data = NULL, - target = NULL, - task = NULL, - gmodel = NULL, - loss = NULL, - pmodels = NULL - ) -) diff --git a/agghoo.Rcheck/00_pkg_src/agghoo/R/R6_Model.R b/agghoo.Rcheck/00_pkg_src/agghoo/R/R6_Model.R deleted file mode 100644 index d48825e..0000000 --- a/agghoo.Rcheck/00_pkg_src/agghoo/R/R6_Model.R +++ /dev/null @@ -1,157 +0,0 @@ -#' @title R6 class representing a (generic) model. -#' -#' @description -#' "Model" class, containing a (generic) learning function, which from -#' data + target [+ params] returns a prediction function X --> y. -#' Parameters for cross-validation are either provided or estimated. -#' Model family can be chosen among "tree", "ppr" and "knn" for now. -#' -#' @importFrom FNN knn.reg -#' @importFrom class knn -#' @importFrom stats ppr -#' @importFrom rpart rpart -#' -#' @export -Model <- R6::R6Class("Model", - public = list( - #' @field nmodels Number of parameters (= number of [predictive] models) - nmodels = NA, - #' @description Create a new generic model. - #' @param data Matrix or data.frame - #' @param target Vector of targets (generally numeric or factor) - #' @param task "regression" or "classification" - #' @param gmodel Generic model returning a predictive function; chosen - #' automatically given data and target nature if not provided. - #' @param params List of parameters for cross-validation (each defining a model) - initialize = function(data, target, task, gmodel = NULL, params = NULL) { - if (is.null(gmodel)) { - # (Generic) model not provided - all_numeric <- is.numeric(as.matrix(data)) - if (!all_numeric) - # At least one non-numeric column: use trees - gmodel = "tree" - else - # Numerical data - gmodel = ifelse(task == "regression", "ppr", "knn") - } - if (is.null(params)) - # Here, gmodel is a string (= its family), - # because a custom model must be given with its parameters. - params <- as.list(private$getParams(gmodel, data, target, task)) - private$params <- params - if (is.character(gmodel)) - gmodel <- private$getGmodel(gmodel, task) - private$gmodel <- gmodel - self$nmodels <- length(private$params) - }, - #' @description - #' Returns the model at index "index", trained on dataHO/targetHO. - #' @param dataHO Matrix or data.frame - #' @param targetHO Vector of targets (generally numeric or factor) - #' @param index Index of the model in 1...nmodels - get = function(dataHO, targetHO, index) { - private$gmodel(dataHO, targetHO, private$params[[index]]) - }, - #' @description - #' Returns the parameter at index "index". - #' @param index Index of the model in 1...nmodels - getParam = function(index) { - private$params[[index]] - } - ), - private = list( - # No need to expose model or parameters list - gmodel = NULL, - params = NULL, - # Main function: given a family, return a generic model, which in turn - # will output a predictive model from data + target + params. - getGmodel = function(family, task) { - if (family == "tree") { - function(dataHO, targetHO, param) { - base::require(rpart) - method <- ifelse(task == "classification", "class", "anova") - if (is.null(colnames(dataHO))) - colnames(dataHO) <- paste0("V", 1:ncol(dataHO)) - df <- data.frame(cbind(dataHO, target=targetHO)) - model <- rpart::rpart(target ~ ., df, method=method, control=list(cp=param)) - if (task == "regression") - type <- "vector" - else { - if (is.null(dim(targetHO))) - type <- "class" - else - type <- "prob" - } - function(X) { - if (is.null(colnames(X))) - colnames(X) <- paste0("V", 1:ncol(X)) - predict(model, as.data.frame(X), type=type) - } - } - } - else if (family == "ppr") { - function(dataHO, targetHO, param) { - model <- stats::ppr(dataHO, targetHO, nterms=param) - function(X) predict(model, X) - } - } - else if (family == "knn") { - if (task == "classification") { - function(dataHO, targetHO, param) { - base::require(class) - function(X) class::knn(dataHO, X, cl=targetHO, k=param) - } - } - else { - function(dataHO, targetHO, param) { - base::require(FNN) - function(X) FNN::knn.reg(dataHO, X, y=targetHO, k=param)$pred - } - } - } - }, - # Return a default list of parameters, given a gmodel family - getParams = function(family, data, target, task) { - if (family == "tree") { - # Run rpart once to obtain a CV grid for parameter cp - base::require(rpart) - df <- data.frame(cbind(data, target=target)) - ctrl <- list( - cp = 0, - minsplit = 2, - minbucket = 1, - xval = 0) - method <- ifelse(task == "classification", "class", "anova") - r <- rpart(target ~ ., df, method=method, control=ctrl) - cps <- r$cptable[-1,1] - if (length(cps) <= 1) - stop("No cross-validation possible: select another model") - if (length(cps) <= 11) - return (cps) - step <- (length(cps) - 1) / 10 - cps[unique(round(seq(1, length(cps), step)))] - } - else if (family == "ppr") - # This is nterms in ppr() function - 1:10 - else if (family == "knn") { - n <- nrow(data) - # Choose ~10 NN values - K <- length(unique(target)) - if (n <= 10) - return (1:(n-1)) - sqrt_n <- sqrt(n) - step <- (2*sqrt_n - 1) / 10 - grid <- unique(round(seq(1, 2*sqrt_n, step))) - if (K == 2) { - # Common binary classification case: odd number of neighbors - for (i in 2:11) { - if (grid[i] %% 2 == 0) - grid[i] <- grid[i] + 1 #arbitrary choice - } - } - grid - } - } - ) -) diff --git a/agghoo.Rcheck/00_pkg_src/agghoo/R/agghoo.R b/agghoo.Rcheck/00_pkg_src/agghoo/R/agghoo.R deleted file mode 100644 index 48ac741..0000000 --- a/agghoo.Rcheck/00_pkg_src/agghoo/R/agghoo.R +++ /dev/null @@ -1,58 +0,0 @@ -#' agghoo -#' -#' Run the (core) agghoo procedure. -#' Arguments specify the list of models, their parameters and the -#' cross-validation settings, among others. -#' -#' @param data Data frame or matrix containing the data in lines. -#' @param target The target values to predict. Generally a vector, -#' but possibly a matrix in the case of "soft classification". -#' @param task "classification" or "regression". Default: -#' regression if target is numerical, classification otherwise. -#' @param gmodel A "generic model", which is a function returning a predict -#' function (taking X as only argument) from the tuple -#' (dataHO, targetHO, param), where 'HO' stands for 'Hold-Out', -#' referring to cross-validation. Cross-validation is run on an array -#' of 'param's. See params argument. Default: see R6::Model. -#' @param params A list of parameters. Often, one list cell is just a -#' numerical value, but in general it could be of any type. -#' Default: see R6::Model. -#' @param loss A function assessing the error of a prediction. -#' Arguments are y1 and y2 (comparing a prediction to known values). -#' loss(y1, y2) --> real number (error). Default: see R6::AgghooCV. -#' -#' @return -#' An R6::AgghooCV object o. Then, call o$fit() and finally o$predict(newData) -#' -#' @examples -#' # Regression: -#' a_reg <- agghoo(iris[,-c(2,5)], iris[,2]) -#' a_reg$fit() -#' pr <- a_reg$predict(iris[,-c(2,5)] + rnorm(450, sd=0.1)) -#' # Classification -#' a_cla <- agghoo(iris[,-5], iris[,5]) -#' a_cla$fit() -#' pc <- a_cla$predict(iris[,-5] + rnorm(600, sd=0.1)) -#' -#' @seealso Function \code{\link{compareTo}} -#' -#' @references -#' Guillaume Maillard, Sylvain Arlot, Matthieu Lerasle. "Aggregated hold-out". -#' Journal of Machine Learning Research 22(20):1--55, 2021. -#' -#' @export -agghoo <- function( - data, target, task = NULL, gmodel = NULL, params = NULL, loss = NULL -) { - # Args check: - checkDaTa(data, target) - task <- checkTask(task, target) - modPar <- checkModPar(gmodel, params) - loss <- checkLoss(loss, task) - - # Build Model object (= list of parameterized models) - model <- Model$new(data, target, task, modPar$gmodel, modPar$params) - - # Return AgghooCV object, to run and predict - AgghooCV$new(data, target, task, model, loss) -} diff --git a/agghoo.Rcheck/00_pkg_src/agghoo/R/checks.R b/agghoo.Rcheck/00_pkg_src/agghoo/R/checks.R deleted file mode 100644 index a19d55f..0000000 --- a/agghoo.Rcheck/00_pkg_src/agghoo/R/checks.R +++ /dev/null @@ -1,102 +0,0 @@ -# Internal usage: check and fill arguments with default values. - -defaultLoss_classif <- function(y1, y2) { - if (is.null(dim(y1))) - # Standard case: "hard" classification - mean(y1 != y2) - else { - # "Soft" classification: predict() outputs a probability matrix - # In this case "target" could be in matrix form. - if (!is.null(dim(y2))) - mean(rowSums(abs(y1 - y2))) - else { - # Or not: y2 is a "factor". - y2 <- as.character(y2) - # NOTE: the user should provide target in matrix form because - # matching y2 with columns is rather inefficient! - names <- colnames(y1) - positions <- list() - for (idx in seq_along(names)) - positions[[ names[idx] ]] <- idx - mean(vapply( - seq_along(y2), - function(idx) sum(abs(y1[idx,] - positions[[ y2[idx] ]])), - 0)) - } - } -} - -defaultLoss_regress <- function(y1, y2) { - mean(abs(y1 - y2)) -} - -# TODO: allow strings like "MSE", "abs" etc -checkLoss <- function(loss, task) { - if (!is.null(loss) && !is.function(loss)) - stop("loss: function(y1, y2) --> Real") - if (is.null(loss)) { - loss <- if (task == "classification") { - defaultLoss_classif - } else { - defaultLoss_regress - } - } - loss -} - -checkCV <- function(CV) { - if (is.null(CV)) - CV <- list(type="MC", V=10, test_size=0.2, shuffle=TRUE) - else { - if (!is.list(CV)) - stop("CV: list of type('MC'|'vfold'), V(integer, [test_size, shuffle]") - if (is.null(CV$type)) { - warning("CV$type not provided: set to MC") - CV$type <- "MC" - } - if (is.null(CV$V)) { - warning("CV$V not provided: set to 10") - CV$V <- 10 - } - if (CV$type == "MC" && is.null(CV$test_size)) - CV$test_size <- 0.2 - if (CV$type == "vfold" && is.null(CV$shuffle)) - CV$shuffle <- TRUE - } - CV -} - -checkDaTa <- function(data, target) { - if (!is.data.frame(data) && !is.matrix(data)) - stop("data: data.frame or matrix") - if (is.data.frame(target) || is.matrix(target)) { - if (!is.numeric(target)) - stop("multi-columns target must be a probability matrix") - if (nrow(target) != nrow(data) || ncol(target) == 1) - stop("target probability matrix does not match data size") - } - else if (!is.numeric(target) && !is.factor(target) && !is.character(target)) - stop("target: numeric, factor or character vector") -} - -checkTask <- function(task, target) { - if (!is.null(task)) - task <- match.arg(task, c("classification", "regression")) - ifelse(is.numeric(target), "regression", "classification") -} - -checkModPar <- function(gmodel, params) { - if (is.character(gmodel)) - gmodel <- match.arg(gmodel, c("knn", "ppr", "rf", "tree")) - else if (!is.null(gmodel) && !is.function(gmodel)) - stop("gmodel: function(dataHO, targetHO, param) --> function(X) --> y") - if (is.numeric(params) || is.character(params)) - params <- as.list(params) - if (!is.list(params) && !is.null(params)) - stop("params: numerical, character, or list (passed to model)") - if (is.function(gmodel) && !is.list(params)) - stop("params must be provided when using a custom model") - if (is.list(params) && is.null(gmodel)) - stop("model (or family) must be provided when using custom params") - list(gmodel=gmodel, params=params) -} diff --git a/agghoo.Rcheck/00_pkg_src/agghoo/R/compareTo.R b/agghoo.Rcheck/00_pkg_src/agghoo/R/compareTo.R deleted file mode 100644 index fe5b24d..0000000 --- a/agghoo.Rcheck/00_pkg_src/agghoo/R/compareTo.R +++ /dev/null @@ -1,247 +0,0 @@ -#' standardCV_core -#' -#' Cross-validation method, added here as an example. -#' Parameters are described in ?agghoo and ?AgghooCV -standardCV_core <- function(data, target, task, gmodel, params, loss, CV) { - n <- nrow(data) - shuffle_inds <- NULL - if (CV$type == "vfold" && CV$shuffle) - shuffle_inds <- sample(n, n) - list_testinds <- list() - for (v in seq_len(CV$V)) - list_testinds[[v]] <- get_testIndices(n, CV, v, shuffle_inds) - gmodel <- agghoo::Model$new(data, target, task, gmodel, params) - best_error <- Inf - best_p <- NULL - for (p in seq_len(gmodel$nmodels)) { - error <- Reduce('+', lapply(seq_len(CV$V), function(v) { - testIdx <- list_testinds[[v]] - d <- splitTrainTest(data, target, testIdx) - model_pred <- gmodel$get(d$dataTrain, d$targetTrain, p) - prediction <- model_pred(d$dataTest) - loss(prediction, d$targetTest) - }) ) - if (error <= best_error) { - if (error == best_error) - best_p[[length(best_p)+1]] <- p - else { - best_p <- list(p) - best_error <- error - } - } - } - chosenP <- best_p[[ sample(length(best_p), 1) ]] - list(model=gmodel$get(data, target, chosenP), param=gmodel$getParam(chosenP)) -} - -#' CVvoting_core -#' -#' "voting" cross-validation method, added here as an example. -#' Parameters are described in ?agghoo and ?AgghooCV -CVvoting_core <- function(data, target, task, gmodel, params, loss, CV) { - CV <- checkCV(CV) - n <- nrow(data) - shuffle_inds <- NULL - if (CV$type == "vfold" && CV$shuffle) - shuffle_inds <- sample(n, n) - gmodel <- agghoo::Model$new(data, target, task, gmodel, params) - bestP <- rep(0, gmodel$nmodels) - for (v in seq_len(CV$V)) { - test_indices <- get_testIndices(n, CV, v, shuffle_inds) - d <- splitTrainTest(data, target, test_indices) - best_p <- NULL - best_error <- Inf - for (p in seq_len(gmodel$nmodels)) { - model_pred <- gmodel$get(d$dataTrain, d$targetTrain, p) - prediction <- model_pred(d$dataTest) - error <- loss(prediction, d$targetTest) - if (error <= best_error) { - if (error == best_error) - best_p[[length(best_p)+1]] <- p - else { - best_p <- list(p) - best_error <- error - } - } - } - for (p in best_p) - bestP[p] <- bestP[p] + 1 - } - # Choose a param at random in case of ex-aequos: - maxP <- max(bestP) - chosenP <- sample(which(bestP == maxP), 1) - list(model=gmodel$get(data, target, chosenP), param=gmodel$getParam(chosenP)) -} - -#' standardCV_run -#' -#' Run and eval the standard cross-validation procedure. -#' Parameters are rather explicit except "floss", which corresponds to the -#' "final" loss function, applied to compute the error on testing dataset. -standardCV_run <- function( - dataTrain, dataTest, targetTrain, targetTest, floss, verbose, ... -) { - args <- list(...) - task <- checkTask(args$task, targetTrain) - modPar <- checkModPar(args$gmodel, args$params) - loss <- checkLoss(args$loss, task) - CV <- checkCV(args$CV) - s <- standardCV_core( - dataTrain, targetTrain, task, modPar$gmodel, modPar$params, loss, CV) - if (verbose) - print(paste( "Parameter:", s$param )) - p <- s$model(dataTest) - err <- floss(p, targetTest) - if (verbose) - print(paste("error CV:", err)) - invisible(err) -} - -#' CVvoting_run -#' -#' Run and eval the voting cross-validation procedure. -#' Parameters are rather explicit except "floss", which corresponds to the -#' "final" loss function, applied to compute the error on testing dataset. -CVvoting_run <- function( - dataTrain, dataTest, targetTrain, targetTest, floss, verbose, ... -) { - args <- list(...) - task <- checkTask(args$task, targetTrain) - modPar <- checkModPar(args$gmodel, args$params) - loss <- checkLoss(args$loss, task) - CV <- checkCV(args$CV) - s <- CVvoting_core( - dataTrain, targetTrain, task, modPar$gmodel, modPar$params, loss, CV) - if (verbose) - print(paste( "Parameter:", s$param )) - p <- s$model(dataTest) - err <- floss(p, targetTest) - if (verbose) - print(paste("error CV:", err)) - invisible(err) -} - -#' agghoo_run -#' -#' Run and eval the agghoo procedure. -#' Parameters are rather explicit except "floss", which corresponds to the -#' "final" loss function, applied to compute the error on testing dataset. -agghoo_run <- function( - dataTrain, dataTest, targetTrain, targetTest, floss, verbose, ... -) { - args <- list(...) - CV <- checkCV(args$CV) - # Must remove CV arg, or agghoo will complain "error: unused arg" - args$CV <- NULL - a <- do.call(agghoo, c(list(data=dataTrain, target=targetTrain), args)) - a$fit(CV) - if (verbose) { - print("Parameters:") - print(unlist(a$getParams())) - } - pa <- a$predict(dataTest) - err <- floss(pa, targetTest) - if (verbose) - print(paste("error agghoo:", err)) - invisible(err) -} - -#' compareTo -#' -#' Compare a list of learning methods (or run only one), on data/target. -#' -#' @param data Data matrix or data.frame -#' @param target Target vector (generally) -#' @param method_s Either a single function, or a list -#' (examples: agghoo_run, standardCV_run) -#' @param rseed Seed of the random generator (-1 means "random seed") -#' @param floss Loss function to compute the error on testing dataset. -#' @param verbose TRUE to request methods to be verbose. -#' @param ... arguments passed to method_s function(s) -#' -#' @export -compareTo <- function( - data, target, method_s, rseed=-1, floss=NULL, verbose=TRUE, ... -) { - if (rseed >= 0) - set.seed(rseed) - n <- nrow(data) - test_indices <- sample( n, round(n / ifelse(n >= 500, 10, 5)) ) - d <- splitTrainTest(data, target, test_indices) - - # Set error function to be used on model outputs (not in core method) - task <- checkTask(list(...)$task, target) - if (is.null(floss)) { - floss <- function(y1, y2) { - ifelse(task == "classification", mean(y1 != y2), mean(abs(y1 - y2))) - } - } - - # Run (and compare) all methods: - runOne <- function(o) { - o(d$dataTrain, d$dataTest, d$targetTrain, d$targetTest, floss, verbose, ...) - } - errors <- c() - if (is.list(method_s)) - errors <- sapply(method_s, runOne) - else if (is.function(method_s)) - errors <- runOne(method_s) - invisible(errors) -} - -#' compareMulti -#' -#' Run compareTo N times in parallel. -#' -#' @inheritParams compareTo -#' @param N Number of calls to method(s) -#' @param nc Number of cores. Set to parallel::detectCores() if undefined. -#' Set it to any value <=1 to say "no parallelism". -#' @param verbose TRUE to print task numbers and "Errors:" in the end. -#' -#' @export -compareMulti <- function( - data, target, method_s, N=100, nc=NA, floss=NULL, verbose=TRUE, ... -) { - base::require(parallel) - if (is.na(nc)) - nc <- parallel::detectCores() - - # "One" comparison for each method in method_s (list) - compareOne <- function(n) { - if (verbose) - print(n) - compareTo(data, target, method_s, n, floss, verbose=FALSE, ...) - } - - errors <- if (nc >= 2) { - parallel::mclapply(1:N, compareOne, mc.cores = nc) - } else { - lapply(1:N, compareOne) - } - if (verbose) - print("Errors:") - Reduce('+', errors) / N -} - -#' compareRange -#' -#' Run compareMulti on several values of the parameter V. -#' -#' @inheritParams compareMulti -#' @param V_range Values of V to be tested. -#' -#' @export -compareRange <- function( - data, target, method_s, N=100, nc=NA, floss=NULL, V_range=c(10,15,20), ... -) { - args <- list(...) - # Avoid warnings if V is left unspecified: - CV <- suppressWarnings( checkCV(args$CV) ) - errors <- lapply(V_range, function(V) { - args$CV$V <- V - do.call(compareMulti, c(list(data=data, target=target, method_s=method_s, - N=N, nc=nc, floss=floss, verbose=F), args)) - }) - print(paste(V_range, errors)) -} diff --git a/agghoo.Rcheck/00_pkg_src/agghoo/R/utils.R b/agghoo.Rcheck/00_pkg_src/agghoo/R/utils.R deleted file mode 100644 index 823b123..0000000 --- a/agghoo.Rcheck/00_pkg_src/agghoo/R/utils.R +++ /dev/null @@ -1,30 +0,0 @@ -# Helper for cross-validation: return the next test indices. -get_testIndices <- function(n, CV, v, shuffle_inds) { - if (CV$type == "vfold") { - # Slice indices (optionnally shuffled) - first_index = round((v-1) * n / CV$V) + 1 - last_index = round(v * n / CV$V) - test_indices = first_index:last_index - if (!is.null(shuffle_inds)) - test_indices <- shuffle_inds[test_indices] - } - else - # Monte-Carlo cross-validation - test_indices = sample(n, round(n * CV$test_size)) - test_indices -} - -# Helper which split data into training and testing parts. -splitTrainTest <- function(data, target, testIdx) { - dataTrain <- data[-testIdx,] - targetTrain <- target[-testIdx] - dataTest <- data[testIdx,] - targetTest <- target[testIdx] - # [HACK] R will cast 1-dim matrices into vectors: - if (!is.matrix(dataTrain) && !is.data.frame(dataTrain)) - dataTrain <- as.matrix(dataTrain) - if (!is.matrix(dataTest) && !is.data.frame(dataTest)) - dataTest <- as.matrix(dataTest) - list(dataTrain=dataTrain, targetTrain=targetTrain, - dataTest=dataTest, targetTest=targetTest) -} diff --git a/agghoo.Rcheck/00_pkg_src/agghoo/README.md b/agghoo.Rcheck/00_pkg_src/agghoo/README.md deleted file mode 100644 index 337abcb..0000000 --- a/agghoo.Rcheck/00_pkg_src/agghoo/README.md +++ /dev/null @@ -1,15 +0,0 @@ -# agghoo - -R package for model selection based on aggregation. -Alternative to standard cross-validation. - -## Install the package - -From GitHub: `devtools::install_github("yagu0/agghoo")` - -Locally, in a terminal: `R CMD INSTALL .` - -## Use the package - - library(agghoo) - ?agghoo diff --git a/agghoo.Rcheck/00_pkg_src/agghoo/TODO b/agghoo.Rcheck/00_pkg_src/agghoo/TODO deleted file mode 100644 index f197d8a..0000000 --- a/agghoo.Rcheck/00_pkg_src/agghoo/TODO +++ /dev/null @@ -1,2 +0,0 @@ -Support des valeurs manquantes (cf. mlbench::Ozone dataset) -Méthode pour données mixtes ? (que tree actuellement) diff --git a/agghoo.Rcheck/00_pkg_src/agghoo/example/example.R b/agghoo.Rcheck/00_pkg_src/agghoo/example/example.R deleted file mode 100644 index 7fae2ce..0000000 --- a/agghoo.Rcheck/00_pkg_src/agghoo/example/example.R +++ /dev/null @@ -1,43 +0,0 @@ -library(agghoo) - -data(iris) #already there -library(mlbench) -data(PimaIndiansDiabetes) - -# Run only agghoo on iris dataset (split into train/test, etc). -# Default parameters: see ?agghoo and ?AgghooCV -compareTo(iris[,-5], iris[,5], agghoo_run) - -# Run both agghoo and standard CV, specifiying some parameters. -compareTo(iris[,-5], iris[,5], list(agghoo_run, standardCV_run), gmodel="tree") -compareTo(iris[,-5], iris[,5], list(agghoo_run, standardCV_run), - gmodel="knn", params=c(3, 7, 13, 17, 23, 31), - CV = list(type="vfold", V=5, shuffle=T)) - -# Run both agghoo and standard CV, averaging errors over N=10 runs -# (possible for a single method but wouldn't make much sense...). -compareMulti(PimaIndiansDiabetes[,-9], PimaIndiansDiabetes[,9], - list(agghoo_run, standardCV_run), N=10, gmodel="rf") - -# Compare several values of V -compareRange(PimaIndiansDiabetes[,-9], PimaIndiansDiabetes[,9], - list(agghoo_run, standardCV_run), N=10, V_range=c(10, 20, 30)) - -# For example to use average of squared differences. -# Default is "mean(abs(y1 - y2))". -loss2 <- function(y1, y2) mean((y1 - y2)^2) - -# In regression on artificial datasets (TODO: real data?) -data <- mlbench.twonorm(300, 3)$x -target <- rowSums(data) -compareMulti(data, target, list(agghoo_run, standardCV_run), - N=10, gmodel="tree", params=c(1, 3, 5, 7, 9), loss=loss2, - CV = list(type="MC", V=12, test_size=0.3)) - -compareMulti(data, target, list(agghoo_run, standardCV_run), - N=10, floss=loss2, CV = list(type="vfold", V=10, shuffle=F)) - -# Random tests to check that method doesn't fail in 1D case -M <- matrix(rnorm(200), ncol=2) -compareTo(as.matrix(M[,-2]), M[,2], list(agghoo_run, standardCV_run), gmodel="knn") -compareTo(as.matrix(M[,-2]), M[,2], list(agghoo_run, standardCV_run), gmodel="tree") diff --git a/agghoo.Rcheck/00_pkg_src/agghoo/test/TODO b/agghoo.Rcheck/00_pkg_src/agghoo/test/TODO deleted file mode 100644 index 50acca1..0000000 --- a/agghoo.Rcheck/00_pkg_src/agghoo/test/TODO +++ /dev/null @@ -1 +0,0 @@ -Some unit tests? diff --git a/agghoo.Rcheck/00check.log b/agghoo.Rcheck/00check.log deleted file mode 100644 index 684daae..0000000 --- a/agghoo.Rcheck/00check.log +++ /dev/null @@ -1,52 +0,0 @@ -* using log directory ‘/home/auder/repos/agghoo/agghoo.Rcheck’ -* using R version 4.2.1 (2022-06-23) -* using platform: x86_64-pc-linux-gnu (64-bit) -* using session charset: UTF-8 -* checking for file ‘agghoo/DESCRIPTION’ ... OK -* this is package ‘agghoo’ version ‘0.1-0’ -* checking package namespace information ... OK -* checking package dependencies ... OK -* checking if this is a source package ... OK -* checking if there is a namespace ... OK -* checking for executable files ... OK -* checking for hidden files and directories ... OK -* checking for portable file names ... OK -* checking for sufficient/correct file permissions ... OK -* checking whether package ‘agghoo’ can be installed ... OK -* checking installed package size ... OK -* checking package directory ... OK -* checking DESCRIPTION meta-information ... OK -* checking top-level files ... OK -* checking for left-over files ... OK -* checking index information ... OK -* checking package subdirectories ... OK -* checking R files for non-ASCII characters ... OK -* checking R files for syntax errors ... OK -* checking whether the package can be loaded ... OK -* checking whether the package can be loaded with stated dependencies ... OK -* checking whether the package can be unloaded cleanly ... OK -* checking whether the namespace can be loaded with stated dependencies ... OK -* checking whether the namespace can be unloaded cleanly ... OK -* checking loading without being on the library search path ... OK -* checking dependencies in R code ... OK -* checking S3 generic/method consistency ... OK -* checking replacement functions ... OK -* checking foreign function calls ... OK -* checking R code for possible problems ... NOTE -compareMulti: no visible binding for global variable ‘parallel’ -Undefined global functions or variables: - parallel -* checking for missing documentation entries ... WARNING -Undocumented code objects: - ‘AgghooCV’ ‘Model’ ‘agghoo’ ‘compareMulti’ ‘compareRange’ ‘compareTo’ -All user-level objects in a package should have documentation entries. -See chapter ‘Writing R documentation files’ in the ‘Writing R -Extensions’ manual. -* checking examples ... NONE -* checking PDF version of manual ... WARNING -LaTeX errors when creating PDF version. -This typically indicates Rd problems. -* checking PDF version of manual without index ... ERROR -Re-running with no redirection of stdout/stderr. -* DONE -Status: 1 ERROR, 2 WARNINGs, 1 NOTE diff --git a/agghoo.Rcheck/00install.out b/agghoo.Rcheck/00install.out deleted file mode 100644 index 4ec7d20..0000000 --- a/agghoo.Rcheck/00install.out +++ /dev/null @@ -1,12 +0,0 @@ -* installing *source* package ‘agghoo’ ... -** using staged installation -** R -** byte-compile and prepare package for lazy loading -** help -No man pages found in package ‘agghoo’ -*** installing help indices -** building package indices -** testing if installed package can be loaded from temporary location -** testing if installed package can be loaded from final location -** testing if installed package keeps a record of temporary installation path -* DONE (agghoo) diff --git a/agghoo.Rcheck/Rdlatex.log b/agghoo.Rcheck/Rdlatex.log deleted file mode 100644 index ed3d8b1..0000000 --- a/agghoo.Rcheck/Rdlatex.log +++ /dev/null @@ -1,22 +0,0 @@ -Hmm ... looks like a package -Converting parsed Rd's to LaTeX Creating pdf output from LaTeX ... -warning: kpathsea: configuration file texmf.cnf not found in these directories: /usr/bin:/usr/bin/share/texmf-local/web2c:/usr/bin/share/texmf-dist/web2c:/usr/bin/share/texmf/web2c:/usr/bin/texmf-local/web2c:/usr/bin/texmf-dist/web2c:/usr/bin/texmf/web2c:/usr:/usr/share/texmf-local/web2c:/usr/share/texmf-dist/web2c:/usr/share/texmf/web2c:/usr/texmf-local/web2c:/usr/texmf-dist/web2c:/usr/texmf/web2c://texmf-local/web2c:/://share/texmf-local/web2c://share/texmf-dist/web2c://share/texmf/web2c://texmf-local/web2c://texmf-dist/web2c://texmf/web2c. -This is pdfTeX, Version 3.141592653-2.6-1.40.24 (TeX Live 2022/Arch Linux) (preloaded format=pdflatex) - -kpathsea: Running mktexfmt pdflatex.fmt -mktexfmt: No such file or directory -I can't find the format file `pdflatex.fmt'! -Warning in file(con, "r") : - cannot open file 'Rd2.log': No such file or directory -Error in file(con, "r") : cannot open the connection -warning: kpathsea: configuration file texmf.cnf not found in these directories: /usr/bin:/usr/bin/share/texmf-local/web2c:/usr/bin/share/texmf-dist/web2c:/usr/bin/share/texmf/web2c:/usr/bin/texmf-local/web2c:/usr/bin/texmf-dist/web2c:/usr/bin/texmf/web2c:/usr:/usr/share/texmf-local/web2c:/usr/share/texmf-dist/web2c:/usr/share/texmf/web2c:/usr/texmf-local/web2c:/usr/texmf-dist/web2c:/usr/texmf/web2c://texmf-local/web2c:/://share/texmf-local/web2c://share/texmf-dist/web2c://share/texmf/web2c://texmf-local/web2c://texmf-dist/web2c://texmf/web2c. -This is pdfTeX, Version 3.141592653-2.6-1.40.24 (TeX Live 2022/Arch Linux) (preloaded format=pdflatex) - -kpathsea: Running mktexfmt pdflatex.fmt -mktexfmt: No such file or directory -I can't find the format file `pdflatex.fmt'! -Warning in file(con, "r") : - cannot open file 'Rd2.log': No such file or directory -Error in file(con, "r") : cannot open the connection -Error in running tools::texi2pdf() -You may want to clean up by 'rm -Rf /tmp/RtmpIZpCnq/Rd2pdf1084ce20004' diff --git a/agghoo.Rcheck/agghoo-manual.tex b/agghoo.Rcheck/agghoo-manual.tex deleted file mode 100644 index 8a561f0..0000000 --- a/agghoo.Rcheck/agghoo-manual.tex +++ /dev/null @@ -1,44 +0,0 @@ -\nonstopmode{} -\documentclass[letterpaper]{book} -\usepackage[times,hyper]{Rd} -\usepackage{makeidx} -\usepackage[utf8]{inputenc} % @SET ENCODING@ -% \usepackage{graphicx} % @USE GRAPHICX@ -\makeindex{} -\begin{document} -\chapter*{} -\begin{center} -{\textbf{\huge Package `agghoo'}} -\par\bigskip{\large \today} -\end{center} -\ifthenelse{\boolean{Rd@use@hyper}}{\hypersetup{pdftitle = {agghoo: Aggregated Hold-Out Cross Validation}}}{} -\begin{description} -\raggedright{} -\item[Title]\AsIs{Aggregated Hold-Out Cross Validation} -\item[Date]\AsIs{2022-08-30} -\item[Version]\AsIs{0.1-0} -\item[Description]\AsIs{The 'agghoo' procedure is an alternative to usual cross-validation. -Instead of choosing the best model trained on V subsamples, it determines -a winner model for each subsample, and then aggregate the V outputs. -For the details, see ``Aggregated hold-out'' by Guillaume Maillard, -Sylvain Arlot, Matthieu Lerasle (2021) <}\Rhref{https://arxiv.org/abs/1909.04890}{arXiv:1909.04890}\AsIs{> -published in Journal of Machine Learning Research 22(20):1--55.} -\item[Author]\AsIs{Sylvain Arlot }\email{sylvain.arlot@universite-paris-saclay.fr}\AsIs{ [cph,ctb], -Benjamin Auder }\email{benjamin.auder@universite-paris-saclay.fr}\AsIs{ [aut,cre,cph], -Melina Gallopin }\email{melina.gallopin@universite-paris-saclay.fr}\AsIs{ [cph,ctb], -Matthieu Lerasle }\email{matthieu.lerasle@universite-paris-saclay.fr}\AsIs{ [cph,ctb], -Guillaume Maillard }\email{guillaume.maillard@uni.lu}\AsIs{ [cph,ctb]} -\item[Maintainer]\AsIs{Benjamin Auder }\email{benjamin.auder@universite-paris-saclay.fr}\AsIs{} -\item[Depends]\AsIs{R (>= 3.5.0)} -\item[Imports]\AsIs{class, parallel, R6, rpart, FNN} -\item[Suggests]\AsIs{roxygen2} -\item[URL]\AsIs{}\url{https://git.auder.net/?p=agghoo.git}\AsIs{} -\item[License]\AsIs{MIT + file LICENSE} -\item[RoxygenNote]\AsIs{7.2.1} -\item[Collate]\AsIs{'compareTo.R' 'agghoo.R' 'R6_AgghooCV.R' 'R6_Model.R' -'checks.R' 'utils.R' 'A_NAMESPACE.R'} -\item[NeedsCompilation]\AsIs{no} -\end{description} -\Rdcontents{\R{} topics documented:} -\printindex{} -\end{document} diff --git a/agghoo.Rcheck/agghoo/DESCRIPTION b/agghoo.Rcheck/agghoo/DESCRIPTION deleted file mode 100644 index cb86199..0000000 --- a/agghoo.Rcheck/agghoo/DESCRIPTION +++ /dev/null @@ -1,27 +0,0 @@ -Package: agghoo -Title: Aggregated Hold-Out Cross Validation -Date: 2022-08-30 -Version: 0.1-0 -Description: The 'agghoo' procedure is an alternative to usual cross-validation. - Instead of choosing the best model trained on V subsamples, it determines - a winner model for each subsample, and then aggregate the V outputs. - For the details, see "Aggregated hold-out" by Guillaume Maillard, - Sylvain Arlot, Matthieu Lerasle (2021) - published in Journal of Machine Learning Research 22(20):1--55. -Author: Sylvain Arlot [cph,ctb], - Benjamin Auder [aut,cre,cph], - Melina Gallopin [cph,ctb], - Matthieu Lerasle [cph,ctb], - Guillaume Maillard [cph,ctb] -Maintainer: Benjamin Auder -Depends: R (>= 3.5.0) -Imports: class, parallel, R6, rpart, FNN -Suggests: roxygen2 -URL: https://git.auder.net/?p=agghoo.git -License: MIT + file LICENSE -RoxygenNote: 7.2.1 -Collate: 'compareTo.R' 'agghoo.R' 'R6_AgghooCV.R' 'R6_Model.R' - 'checks.R' 'utils.R' 'A_NAMESPACE.R' -NeedsCompilation: no -Packaged: 2022-09-09 15:45:56 UTC; auder -Built: R 4.2.1; ; 2022-09-09 15:46:05 UTC; unix diff --git a/agghoo.Rcheck/agghoo/LICENSE b/agghoo.Rcheck/agghoo/LICENSE deleted file mode 100644 index 094ff81..0000000 --- a/agghoo.Rcheck/agghoo/LICENSE +++ /dev/null @@ -1,2 +0,0 @@ -YEAR: 2021-2022 -COPYRIGHT HOLDER: Sylvain Arlot, Benjamin Auder, Melina Gallopin, Matthieu Lerasle, Guillaume Maillard diff --git a/agghoo.Rcheck/agghoo/Meta/Rd.rds b/agghoo.Rcheck/agghoo/Meta/Rd.rds deleted file mode 100644 index f7bb5f4..0000000 Binary files a/agghoo.Rcheck/agghoo/Meta/Rd.rds and /dev/null differ diff --git a/agghoo.Rcheck/agghoo/Meta/features.rds b/agghoo.Rcheck/agghoo/Meta/features.rds deleted file mode 100644 index 3dc8fb5..0000000 Binary files a/agghoo.Rcheck/agghoo/Meta/features.rds and /dev/null differ diff --git a/agghoo.Rcheck/agghoo/Meta/hsearch.rds b/agghoo.Rcheck/agghoo/Meta/hsearch.rds deleted file mode 100644 index 051a2b7..0000000 Binary files a/agghoo.Rcheck/agghoo/Meta/hsearch.rds and /dev/null differ diff --git a/agghoo.Rcheck/agghoo/Meta/links.rds b/agghoo.Rcheck/agghoo/Meta/links.rds deleted file mode 100644 index ba5b13a..0000000 Binary files a/agghoo.Rcheck/agghoo/Meta/links.rds and /dev/null differ diff --git a/agghoo.Rcheck/agghoo/Meta/nsInfo.rds b/agghoo.Rcheck/agghoo/Meta/nsInfo.rds deleted file mode 100644 index ca0be5e..0000000 Binary files a/agghoo.Rcheck/agghoo/Meta/nsInfo.rds and /dev/null differ diff --git a/agghoo.Rcheck/agghoo/Meta/package.rds b/agghoo.Rcheck/agghoo/Meta/package.rds deleted file mode 100644 index 138494f..0000000 Binary files a/agghoo.Rcheck/agghoo/Meta/package.rds and /dev/null differ diff --git a/agghoo.Rcheck/agghoo/NAMESPACE b/agghoo.Rcheck/agghoo/NAMESPACE deleted file mode 100644 index 7bbddef..0000000 --- a/agghoo.Rcheck/agghoo/NAMESPACE +++ /dev/null @@ -1,13 +0,0 @@ -# Generated by roxygen2: do not edit by hand - -export(AgghooCV) -export(Model) -export(agghoo) -export(compareMulti) -export(compareRange) -export(compareTo) -importFrom(FNN,knn.reg) -importFrom(R6,R6Class) -importFrom(class,knn) -importFrom(rpart,rpart) -importFrom(stats,ppr) diff --git a/agghoo.Rcheck/agghoo/R/agghoo b/agghoo.Rcheck/agghoo/R/agghoo deleted file mode 100644 index 6686156..0000000 --- a/agghoo.Rcheck/agghoo/R/agghoo +++ /dev/null @@ -1,27 +0,0 @@ -# File share/R/nspackloader.R -# Part of the R package, https://www.R-project.org -# -# Copyright (C) 1995-2012 The R Core Team -# -# This program is free software; you can redistribute it and/or modify -# it under the terms of the GNU General Public License as published by -# the Free Software Foundation; either version 2 of the License, or -# (at your option) any later version. -# -# This program is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# GNU General Public License for more details. -# -# A copy of the GNU General Public License is available at -# https://www.r-project.org/Licenses/ - -local({ - info <- loadingNamespaceInfo() - pkg <- info$pkgname - ns <- .getNamespace(as.name(pkg)) - if (is.null(ns)) - stop("cannot find namespace environment for ", pkg, domain = NA); - dbbase <- file.path(info$libname, pkg, "R", pkg) - lazyLoad(dbbase, ns, filter = function(n) n != ".__NAMESPACE__.") -}) diff --git a/agghoo.Rcheck/agghoo/R/agghoo.rdb b/agghoo.Rcheck/agghoo/R/agghoo.rdb deleted file mode 100644 index 4f8b251..0000000 Binary files a/agghoo.Rcheck/agghoo/R/agghoo.rdb and /dev/null differ diff --git a/agghoo.Rcheck/agghoo/R/agghoo.rdx b/agghoo.Rcheck/agghoo/R/agghoo.rdx deleted file mode 100644 index 2ce7cb7..0000000 Binary files a/agghoo.Rcheck/agghoo/R/agghoo.rdx and /dev/null differ diff --git a/agghoo.Rcheck/agghoo/help/AnIndex b/agghoo.Rcheck/agghoo/help/AnIndex deleted file mode 100644 index e69de29..0000000 diff --git a/agghoo.Rcheck/agghoo/help/agghoo.rdb b/agghoo.Rcheck/agghoo/help/agghoo.rdb deleted file mode 100644 index e69de29..0000000 diff --git a/agghoo.Rcheck/agghoo/help/agghoo.rdx b/agghoo.Rcheck/agghoo/help/agghoo.rdx deleted file mode 100644 index c28f3f9..0000000 Binary files a/agghoo.Rcheck/agghoo/help/agghoo.rdx and /dev/null differ diff --git a/agghoo.Rcheck/agghoo/help/aliases.rds b/agghoo.Rcheck/agghoo/help/aliases.rds deleted file mode 100644 index 291dab0..0000000 Binary files a/agghoo.Rcheck/agghoo/help/aliases.rds and /dev/null differ diff --git a/agghoo.Rcheck/agghoo/help/paths.rds b/agghoo.Rcheck/agghoo/help/paths.rds deleted file mode 100644 index 3d2b25e..0000000 Binary files a/agghoo.Rcheck/agghoo/help/paths.rds and /dev/null differ diff --git a/agghoo.Rcheck/agghoo/html/00Index.html b/agghoo.Rcheck/agghoo/html/00Index.html deleted file mode 100644 index 84eed59..0000000 --- a/agghoo.Rcheck/agghoo/html/00Index.html +++ /dev/null @@ -1,24 +0,0 @@ - - -R: Aggregated Hold-Out Cross Validation - - - -
-

Aggregated Hold-Out Cross Validation - -

-
-
-[Up] -[Top] -

Documentation for package ‘agghoo’ version 0.1-0

- - - -

Help Pages

- - -There are no help pages in this package -
diff --git a/agghoo.Rcheck/agghoo/html/R.css b/agghoo.Rcheck/agghoo/html/R.css deleted file mode 100644 index 2ef6cd6..0000000 --- a/agghoo.Rcheck/agghoo/html/R.css +++ /dev/null @@ -1,120 +0,0 @@ -@media screen { - .container { - padding-right: 10px; - padding-left: 10px; - margin-right: auto; - margin-left: auto; - max-width: 900px; - } -} - -.rimage img { /* from knitr - for examples and demos */ - width: 96%; - margin-left: 2%; -} - -.katex { font-size: 1.1em; } - -code { - color: inherit; - background: inherit; -} - -body { - line-height: 1.4; - background: white; - color: black; -} - -a:link { - background: white; - color: blue; -} - -a:visited { - background: white; - color: rgb(50%, 0%, 50%); -} - -h1 { - background: white; - color: rgb(55%, 55%, 55%); - font-family: monospace; - font-size: 1.4em; /* x-large; */ - text-align: center; -} - -h2 { - background: white; - color: rgb(40%, 40%, 40%); - font-family: monospace; - font-size: 1.2em; /* large; */ - text-align: center; -} - -h3 { - background: white; - color: rgb(40%, 40%, 40%); - font-family: monospace; - font-size: 1.2em; /* large; */ -} - -h4 { - background: white; - color: rgb(40%, 40%, 40%); - font-family: monospace; - font-style: italic; - font-size: 1.2em; /* large; */ -} - -h5 { - background: white; - color: rgb(40%, 40%, 40%); - font-family: monospace; -} - -h6 { - background: white; - color: rgb(40%, 40%, 40%); - font-family: monospace; - font-style: italic; -} - -img.toplogo { - width: 4em; - vertical-align: middle; -} - -img.arrow { - width: 30px; - height: 30px; - border: 0; -} - -span.acronym { - font-size: small; -} - -span.env { - font-family: monospace; -} - -span.file { - font-family: monospace; -} - -span.option{ - font-family: monospace; -} - -span.pkg { - font-weight: bold; -} - -span.samp{ - font-family: monospace; -} - -div.vignettes a:hover { - background: rgb(85%, 85%, 85%); -} diff --git a/agghoo_0.1-0.tar.gz b/agghoo_0.1-0.tar.gz deleted file mode 100644 index 719e7e9..0000000 Binary files a/agghoo_0.1-0.tar.gz and /dev/null differ diff --git a/test/TODO b/test/TODO deleted file mode 100644 index 50acca1..0000000 --- a/test/TODO +++ /dev/null @@ -1 +0,0 @@ -Some unit tests?