From 49f27c5f9105df5e69efd6ecc657675a53ffffee Mon Sep 17 00:00:00 2001 From: Benjamin Auder <benjamin.auder@somewhere> Date: Fri, 5 May 2017 01:30:00 +0200 Subject: [PATCH] 'update' --- reports/Experiments.gj | 38 ++++++++++++++++++++++++++------------ 1 file changed, 26 insertions(+), 12 deletions(-) diff --git a/reports/Experiments.gj b/reports/Experiments.gj index aef72e6..b349269 100644 --- a/reports/Experiments.gj +++ b/reports/Experiments.gj @@ -1,6 +1,7 @@ ----- # Résultats numériques +% if P == 8: Cette partie montre les résultats obtenus avec des variantes de l'algorithme décrit à la section 4, en utilisant le package présenté au chapitre précédent. Cet algorithme est systématiquement comparé à deux approches naïves : @@ -28,6 +29,7 @@ difficulté du problème viennent compléter ces premières courbes. Concernant de filaments, la moitié droite du graphe correspond aux jours similaires au jour courant, tandis que la moitié gauche affiche les jours précédents : ce sont donc les voisinages tels qu'utilisés dans l'algorithme. +% endif <% list_titles = ['Pollution par chauffage','Pollution par épandage','Semaine non polluée'] list_indices = ['indices_ch', 'indices_ep', 'indices_np'] @@ -42,8 +44,6 @@ ts_data = read.csv(system.file("extdata","pm10_mesures_H_loc_report.csv", package="talweg")) exo_data = read.csv(system.file("extdata","meteo_extra_noNAs.csv", package="talweg")) -# NOTE: 'GMT' because DST gaps are filled and multiple values merged in -# above dataset. Prediction from P+1 to P+H included. data = getData(ts_data, exo_data) indices_ch = seq(as.Date("2015-01-19"),as.Date("2015-01-25"),"days") @@ -54,14 +54,14 @@ indices_np = seq(as.Date("2015-04-27"),as.Date("2015-05-03"),"days") ##<h2 style="color:blue;font-size:2em">${list_titles[i]}</h2> ${"##"} ${list_titles[i]} -----r -p1_7 = computeForecast(data, ${list_indices[i]}, "Neighbors", "Neighbors", predict_from=P, - horizon=H, simtype="mix", local=FALSE) -p2 = computeForecast(data, ${list_indices[i]}, "Neighbors", NULL, predict_from=P, - horizon=H, simtype="none", local=TRUE) -p3 = computeForecast(data, ${list_indices[i]}, "Average", "Zero", predict_from=P, - horizon=H) -p4 = computeForecast(data, ${list_indices[i]}, "Persistence", "Zero", predict_from=P, - horizon=H, same_day=${'TRUE' if loop.index < 2 else 'FALSE'}) +p1 = computeForecast(data, ${list_indices[i]}, "Neighbors", "Neighbors", + predict_from=P, horizon=H, simtype="mix", local=FALSE) +p2 = computeForecast(data, ${list_indices[i]}, "Neighbors", NULL, + predict_from=P, horizon=H, simtype="none", local=TRUE) +p3 = computeForecast(data, ${list_indices[i]}, "Average", "Zero", + predict_from=P, horizon=H) +p4 = computeForecast(data, ${list_indices[i]}, "Persistence", "Zero", + predict_from=P, horizon=H, same_day=${'TRUE' if loop.index < 2 else 'FALSE'}) -----r e1 = computeError(data, p1, P, H) e2 = computeError(data, p2, P, H) @@ -76,6 +76,7 @@ plotError(list(e1, e4, e3, e2), cols=c(1,2,colors()[258],4)) sum_p23 = e2$abs$indices + e3$abs$indices i_np = which.min(sum_p23) #indice de jour "facile" i_p = which.max(sum_p23) #indice de jour "difficile" +% if P == 8: ----- % if i == 0: L'erreur absolue $-$ en haut à droite $-$ reste modérée pour les meilleurs modèles @@ -96,6 +97,7 @@ journalieÌre d'erreur absolue moyenne (en haut aÌ gauche) $-$ sauf pour la mé voisins "locale" ; ceci peut eÌtre duÌ au fait que l'on ajuste le niveau du jour aÌ preÌdire en le recollant sur la dernieÌre valeur observeÌe (sauf pour "Neighbors local"). % endif +% endif -----r options(repr.plot.width=9, repr.plot.height=4) par(mfrow=c(1,2)) @@ -107,6 +109,7 @@ plotPredReal(data, p2, i_np); title(paste("PredReal p2 day",i_np)) plotPredReal(data, p2, i_p); title(paste("PredReal p2 day",i_p)) # Bleu : prévue ; noir : réalisée (confondues jusqu'à predict_from-1) +% if P == 8: ----- % if i == 0: Le jour "facile aÌ preÌvoir", aÌ gauche, se deÌcompose en deux modes : un leÌger vers 10h @@ -127,6 +130,7 @@ L'impression visuelle est plutôt mauvaise dans ce cas, mais les écart étant m erreurs au final ne sont pas très importantes. De plus deux des quatres graphes sont satisfaisants (en haut à droite et en bas à gauche : forme + niveau acceptables. % endif +% endif -----r par(mfrow=c(1,2)) @@ -141,6 +145,7 @@ title(paste("Filaments p2 day",i_np)) f_p2 = computeFilaments(data, p2, i_p, plot=TRUE) title(paste("Filaments p2 day",i_p)) +% if P == 8: ----- % if i == 0: Les voisins du jour courant (peÌriode de 24h allant de 8h aÌ 7h le lendemain) sont afficheÌs @@ -157,6 +162,7 @@ Les graphes de filaments ont encore la meÌme allure, avec une assez grande vari observeÌe. Cette observation est cependant trompeuse, comme l'indique plus bas le graphe de variabiliteÌ relative. % endif +% endif -----r par(mfrow=c(1,2)) @@ -167,6 +173,7 @@ plotFilamentsBox(data, f_p1, predict_from=P) title(paste("FilBox p1 day",i_p)) # En pointilleÌs la courbe du jour courant (aÌ preÌdire) + précédent +% if P == 8: ----- % if i == 0: Sur cette boxplot fonctionnelle (voir la fonction fboxplot() du package R "rainbow") on @@ -184,6 +191,7 @@ l'impossibiliteÌ de bien preÌvoir une courbe en utilisant l'algorithme aÌ voi On peut reÌappliquer les meÌmes remarques qu'auparavant sur les boxplots fonctionnels : voisins atypiques, courbe aÌ preÌvoir elle-meÌme leÌgeÌrement "hors norme". % endif +% endif -----r par(mfrow=c(1,2)) @@ -200,6 +208,7 @@ plotRelVar(data, f_p2, predict_from=P) title(paste("StdDev p2 day",i_p)) # Variabilité globale en rouge ; sur les voisins en noir +% if P == 8: ----- % if i == 0: Ces graphes viennent confirmer l'impression visuelle apreÌs observation des filaments. En @@ -217,6 +226,7 @@ Cette fois la situation ideÌale est observeÌe : la variabiliteÌ globale est n au-dessus de la variabiliteÌ locale. Bien que cela ne suffise pas aÌ obtenir de bonnes preÌdictions de forme, on constate au moins l'ameÌlioration dans la preÌdiction du niveau. % endif +% endif -----r plotSimils(p1, i_np) title(paste("Weights p1 day",i_np)) @@ -225,6 +235,7 @@ plotSimils(p1, i_p) title(paste("Weights p1 day",i_p)) # Poids < 1/N à gauche, >= 1/N à droite ; jour facile en haut, difficile en bas +% if P == 8: ----- % if i == 0: Les poids se concentrent preÌs de 0 : c'est ce que l'on souhaite observer pour eÌviter @@ -236,14 +247,16 @@ non négligeables (presque trop peu pour le jour "difficile"). Les poids sont répartis comme souhaité : concentrés vers 0 avec quelques valeurs non négligeables. % endif +% endif -----r options(digits=2) -p1$getParams(i_np)$window -p1$getParams(i_p)$window +print(p1$getParams(i_np)$window) +print(p1$getParams(i_p)$window) # Fenêtres sélectionnées dans ]0,7] % endfor +% if P == 8: ----- ${"##"} Bilan @@ -252,3 +265,4 @@ Nos algorithmes aÌ voisins donnent de meilleurs résultats que les approches na élevées, notamment en terme de MAPE. Une possible poste d'amélioration consisterait à aggreÌger les courbes spatialement (sur plusieurs stations situeÌes dans la meÌme agglomeÌration ou dans une meÌme zone). +% endif -- 2.44.0