Commit | Line | Data |
---|---|---|
3a38473a BA |
1 | #' Sample dataset to run the algorithm |
2 | #' | |
3 | #' Original data from AirNormand was removed, and replaced with the following: | |
4 | #' \itemize{ | |
5 | #' \item{daily_exogenous.csv}{a CSV file containing dates in the first column, and then n columns for measurements, and finally n columns for predictions (same day)} | |
6 | #' \item{intraday_measures.csv}{a CSV file with two columns: the first with datetimes, and the second with measurements} | |
7 | #' } | |
8 | #' -----\cr | |
9 | #' Here is the code that generated these files: (not any physical sense)\cr | |
10 | #' #dts = timestamps from 1970-01-01 01:00 to 1972-01-01 00:00\cr | |
11 | #' dts = seq(0,17519*3600,3600)\cr | |
12 | #' intraday = data.frame(\cr | |
13 | #' Time=as.POSIXct(dts,tz="GMT",origin="1970-01-01 01:00"),\cr | |
14 | #' Measure=rgamma(length(dts),10,.7) )\cr | |
15 | #' dates = seq(as.Date("1970-01-01"), as.Date("1972-01-01"), "day")\cr | |
16 | #' m1 = cos(seq_along(dates))\cr | |
17 | #' m2 = log(seq_along(dates)+1)\cr | |
18 | #' daily = data.frame(\cr | |
19 | #' Date=dates,\cr | |
20 | #' m1=m1,\cr | |
21 | #' m2=m2,\cr | |
22 | #' m1_pred=m1+rnorm(length(m1),sd=.1),\cr | |
23 | #' m2_pred=m2+rnorm(length(m2),sd=.1) )\cr | |
24 | #' write.csv(intraday, file="intraday_measures.csv", row.names=F)\cr | |
25 | #' write.csv(daily, file="daily_exogenous.csv", row.names=F) | |
26 | #' | |
27 | #' @name sample | |
28 | #' @docType data | |
29 | #' @usage data(talweg::sample) | |
30 | #' @format Two dataframes: intraday with 17519 rows and 2 columns (Time,Measure), hourly; | |
31 | #' and daily with 731 rows, 5 columns (Date,m1,m2,m1_pred,m2_pred) | |
32 | NULL |