| 1 | #' computeSynchrones |
| 2 | #' |
| 3 | #' Compute the synchrones curves (sum of clusters elements) from a matrix of medoids, |
| 4 | #' using euclidian distance. |
| 5 | #' |
| 6 | #' @param medoids matrix of medoids in columns (curves of same length as the series) |
| 7 | #' @param getSeries Function to retrieve series (argument: 'indices', integer vector) |
| 8 | #' @param nb_curves How many series? (this is known, at this stage) |
| 9 | #' @inheritParams claws |
| 10 | #' |
| 11 | #' @return A matrix of K synchrones in columns (same length as the series) |
| 12 | #' |
| 13 | #' @export |
| 14 | computeSynchrones <- function(medoids, getSeries, nb_curves, |
| 15 | nb_series_per_chunk, ncores_clust=1,verbose=FALSE,parll=TRUE) |
| 16 | { |
| 17 | # Synchrones computation is embarassingly parallel: compute it by chunks of series |
| 18 | computeSynchronesChunk <- function(indices) |
| 19 | { |
| 20 | if (parll) |
| 21 | { |
| 22 | require("bigmemory", quietly=TRUE) |
| 23 | requireNamespace("synchronicity", quietly=TRUE) |
| 24 | require("epclust", quietly=TRUE) |
| 25 | # The big.matrix objects need to be attached to be usable on the workers |
| 26 | synchrones <- bigmemory::attach.big.matrix(synchrones_desc) |
| 27 | medoids <- bigmemory::attach.big.matrix(medoids_desc) |
| 28 | m <- synchronicity::attach.mutex(m_desc) |
| 29 | } |
| 30 | |
| 31 | # Obtain a chunk of reference series |
| 32 | series_chunk <- getSeries(indices) |
| 33 | nb_series_chunk <- ncol(series_chunk) |
| 34 | |
| 35 | # Get medoids indices for this chunk of series |
| 36 | mi <- assignMedoids(series_chunk, medoids[,]) |
| 37 | |
| 38 | # Update synchrones using mi above, grouping it by values of mi (in 1...K) |
| 39 | # to avoid too many lock/unlock |
| 40 | for (i in seq_len(K)) |
| 41 | { |
| 42 | # lock / unlock required because several writes at the same time |
| 43 | if (parll) |
| 44 | synchronicity::lock(m) |
| 45 | synchrones[,i] <- synchrones[,i] + rowSums(as.matrix(series_chunk[,mi==i])) |
| 46 | if (parll) |
| 47 | synchronicity::unlock(m) |
| 48 | } |
| 49 | NULL |
| 50 | } |
| 51 | |
| 52 | K <- ncol(medoids) |
| 53 | L <- nrow(medoids) |
| 54 | # Use bigmemory (shared==TRUE by default) + synchronicity to fill synchrones in // |
| 55 | synchrones <- bigmemory::big.matrix(nrow=L, ncol=K, type="double", init=0.) |
| 56 | # NOTE: synchronicity is only for Linux & MacOS; on Windows: run sequentially |
| 57 | parll <- (parll && requireNamespace("synchronicity",quietly=TRUE) |
| 58 | && Sys.info()['sysname'] != "Windows") |
| 59 | if (parll) |
| 60 | { |
| 61 | m <- synchronicity::boost.mutex() #for lock/unlock, see computeSynchronesChunk |
| 62 | # mutex and big.matrix objects cannot be passed directly: |
| 63 | # they will be accessed from their description |
| 64 | m_desc <- synchronicity::describe(m) |
| 65 | synchrones_desc <- bigmemory::describe(synchrones) |
| 66 | medoids <- bigmemory::as.big.matrix(medoids) |
| 67 | medoids_desc <- bigmemory::describe(medoids) |
| 68 | # outfile=="" to see stderr/stdout on terminal |
| 69 | cl <- parallel::makeCluster(ncores_clust, outfile="") |
| 70 | parallel::clusterExport(cl, envir=environment(), |
| 71 | varlist=c("synchrones_desc","m_desc","medoids_desc","getSeries")) |
| 72 | } |
| 73 | |
| 74 | if (verbose) |
| 75 | cat(paste("--- Compute ",K," synchrones with ",nb_curves," series\n", sep="")) |
| 76 | |
| 77 | # Balance tasks by splitting 1:nb_curves into groups of size <= nb_series_per_chunk |
| 78 | indices_workers <- .splitIndices(seq_len(nb_curves), nb_series_per_chunk) |
| 79 | ignored <- |
| 80 | if (parll) |
| 81 | parallel::parLapply(cl, indices_workers, computeSynchronesChunk) |
| 82 | else |
| 83 | lapply(indices_workers, computeSynchronesChunk) |
| 84 | |
| 85 | if (parll) |
| 86 | parallel::stopCluster(cl) |
| 87 | |
| 88 | return (synchrones[,]) |
| 89 | } |