Commit | Line | Data |
---|---|---|
086ca318 BA |
1 | #' valse |
2 | #' | |
3 | #' Main function | |
4 | #' | |
5 | #' @param X matrix of covariates (of size n*p) | |
6 | #' @param Y matrix of responses (of size n*m) | |
7 | #' @param procedure among 'LassoMLE' or 'LassoRank' | |
8 | #' @param selecMod method to select a model among 'DDSE', 'DJump', 'BIC' or 'AIC' | |
9 | #' @param gamma integer for the power in the penaly, by default = 1 | |
10 | #' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10 | |
11 | #' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100 | |
12 | #' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4 | |
13 | #' @param kmin integer, minimum number of clusters, by default = 2 | |
14 | #' @param kmax integer, maximum number of clusters, by default = 10 | |
15 | #' @param rang.min integer, minimum rank in the low rank procedure, by default = 1 | |
16 | #' @param rang.max integer, maximum rank in the | |
aa480ac1 BA |
17 | #' @param ncores_outer Number of cores for the outer loop on k |
18 | #' @param ncores_inner Number of cores for the inner loop on lambda | |
19 | #' @param size_coll_mod (Maximum) size of a collection of models | |
20 | #' @param fast TRUE to use compiled C code, FALSE for R code only | |
21 | #' @param verbose TRUE to show some execution traces | |
086ca318 BA |
22 | #' |
23 | #' @return a list with estimators of parameters | |
24 | #' | |
25 | #' @examples | |
26 | #' #TODO: a few examples | |
27 | #' @export | |
2279a641 | 28 | valse = function(X, Y, procedure='LassoMLE', selecMod='DDSE', gamma=1, mini=10, maxi=50, |
aa480ac1 BA |
29 | eps=1e-4, kmin=2, kmax=4, rang.min=1, rang.max=10, ncores_outer=1, ncores_inner=1, |
30 | size_coll_mod=50, fast=TRUE, verbose=FALSE) | |
086ca318 | 31 | { |
086ca318 BA |
32 | p = dim(X)[2] |
33 | m = dim(Y)[2] | |
34 | n = dim(X)[1] | |
4cc632c9 | 35 | |
4cc632c9 BA |
36 | if (verbose) |
37 | print("main loop: over all k and all lambda") | |
38 | ||
2279a641 | 39 | if (ncores_outer > 1) |
086ca318 | 40 | { |
08f4604c | 41 | cl = parallel::makeCluster(ncores_outer, outfile='') |
4cc632c9 BA |
42 | parallel::clusterExport( cl=cl, envir=environment(), varlist=c("X","Y","procedure", |
43 | "selecMod","gamma","mini","maxi","eps","kmin","kmax","rang.min","rang.max", | |
08f4604c | 44 | "ncores_outer","ncores_inner","verbose","p","m") ) |
4cc632c9 BA |
45 | } |
46 | ||
0eb161e3 BA |
47 | # Compute models with k components |
48 | computeModels <- function(k) | |
4cc632c9 | 49 | { |
2279a641 | 50 | if (ncores_outer > 1) |
4cc632c9 BA |
51 | require("valse") #nodes start with an empty environment |
52 | ||
53 | if (verbose) | |
54 | print(paste("Parameters initialization for k =",k)) | |
0eb161e3 | 55 | #smallEM initializes parameters by k-means and regression model in each component, |
086ca318 BA |
56 | #doing this 20 times, and keeping the values maximizing the likelihood after 10 |
57 | #iterations of the EM algorithm. | |
4cc632c9 BA |
58 | P = initSmallEM(k, X, Y) |
59 | grid_lambda <- computeGridLambda(P$phiInit, P$rhoInit, P$piInit, P$gamInit, X, Y, | |
aa480ac1 | 60 | gamma, mini, maxi, eps, fast) |
086cf723 | 61 | if (length(grid_lambda)>size_coll_mod) |
62 | grid_lambda = grid_lambda[seq(1, length(grid_lambda), length.out = size_coll_mod)] | |
4cc632c9 BA |
63 | |
64 | if (verbose) | |
65 | print("Compute relevant parameters") | |
086ca318 | 66 | #select variables according to each regularization parameter |
0eb161e3 BA |
67 | #from the grid: S$selected corresponding to selected variables |
68 | S = selectVariables(P$phiInit, P$rhoInit, P$piInit, P$gamInit, mini, maxi, gamma, | |
aa480ac1 | 69 | grid_lambda, X, Y, 1e-8, eps, ncores_inner, fast) #TODO: 1e-8 as arg?! eps? |
086cf723 | 70 | |
086ca318 | 71 | if (procedure == 'LassoMLE') |
39046da6 | 72 | { |
4cc632c9 BA |
73 | if (verbose) |
74 | print('run the procedure Lasso-MLE') | |
086ca318 BA |
75 | #compute parameter estimations, with the Maximum Likelihood |
76 | #Estimator, restricted on selected variables. | |
08f4604c | 77 | models <- constructionModelesLassoMLE(P$phiInit, P$rhoInit, P$piInit, P$gamInit, |
aa480ac1 | 78 | mini, maxi, gamma, X, Y, thresh, eps, S, ncores_inner, artefact=1e3, fast, verbose) |
086ca318 BA |
79 | } |
80 | else | |
39046da6 | 81 | { |
4cc632c9 BA |
82 | if (verbose) |
83 | print('run the procedure Lasso-Rank') | |
086ca318 BA |
84 | #compute parameter estimations, with the Low Rank |
85 | #Estimator, restricted on selected variables. | |
0eb161e3 | 86 | models <- constructionModelesLassoRank(S$Pi, S$Rho, mini, maxi, X, Y, eps, A1, |
aa480ac1 | 87 | rank.min, rank.max, ncores_inner, fast, verbose) |
086ca318 | 88 | } |
08f4604c BA |
89 | #attention certains modeles sont NULL après selectVariables |
90 | models = models[sapply(models, function(cell) !is.null(cell))] | |
0eb161e3 | 91 | models |
086ca318 | 92 | } |
4cc632c9 | 93 | |
0eb161e3 BA |
94 | # List (index k) of lists (index lambda) of models |
95 | models_list <- | |
19041906 | 96 | if (ncores_outer > 1) |
0eb161e3 | 97 | parLapply(cl, kmin:kmax, computeModels) |
4cc632c9 | 98 | else |
0eb161e3 | 99 | lapply(kmin:kmax, computeModels) |
19041906 | 100 | if (ncores_outer > 1) |
4cc632c9 BA |
101 | parallel::stopCluster(cl) |
102 | ||
0eb161e3 BA |
103 | if (! requireNamespace("capushe", quietly=TRUE)) |
104 | { | |
105 | warning("'capushe' not available: returning all models") | |
106 | return (models_list) | |
107 | } | |
108 | ||
08f4604c | 109 | # Get summary "tableauRecap" from models |
2e813ad2 BA |
110 | tableauRecap = do.call( rbind, lapply( seq_along(models_list), function(i) { |
111 | models <- models_list[[i]] | |
08f4604c | 112 | #Pour un groupe de modeles (même k, différents lambda): |
71a323e6 | 113 | LLH <- sapply( models, function(model) model$llh[1] ) |
114 | k = length(models[[1]]$pi) | |
2e813ad2 | 115 | # TODO: chuis pas sûr du tout des lignes suivantes... |
71a323e6 | 116 | # J'ai l'impression qu'il manque des infos |
117 | ## C'est surtout que la pénalité est la mauvaise, la c'est celle du Lasso, nous on veut ici | |
118 | ##celle de l'heuristique de pentes | |
119 | #sumPen = sapply( models, function(model) | |
120 | # sum( model$pi^gamma * sapply(1:k, function(r) sum(abs(model$phi[,,r]))) ) ) | |
121 | sumPen = sapply(models, function(model) | |
122 | k*(dim(model$rho)[1]+sum(model$phi[,,1]!=0)+1)-1) | |
2e813ad2 | 123 | data.frame(model=paste(i,".",seq_along(models),sep=""), |
71a323e6 | 124 | pen=sumPen/n, complexity=sumPen, contrast=LLH) |
08f4604c | 125 | } ) ) |
71a323e6 | 126 | print(tableauRecap) |
127 | modSel = capushe::capushe(tableauRecap, n) | |
086ca318 BA |
128 | indModSel <- |
129 | if (selecMod == 'DDSE') | |
130 | as.numeric(modSel@DDSE@model) | |
131 | else if (selecMod == 'Djump') | |
132 | as.numeric(modSel@Djump@model) | |
133 | else if (selecMod == 'BIC') | |
134 | modSel@BIC_capushe$model | |
135 | else if (selecMod == 'AIC') | |
136 | modSel@AIC_capushe$model | |
71a323e6 | 137 | |
138 | mod = as.character(tableauRecap[indModSel,1]) | |
139 | listMod = as.integer(unlist(strsplit(mod, "[.]"))) | |
140 | models_list[[listMod[1]]][[listMod[2]]] | |
141 | models_list | |
086ca318 | 142 | } |