167be91fd5d1e4f6f8fee7ae4834d6eb4858b1dd
1 // (Orthodox) Chess rules are defined in ChessRules class.
2 // Variants generally inherit from it, and modify some parts.
4 import { ArrayFun
} from "@/utils/array";
5 import { randInt
, shuffle
} from "@/utils/alea";
7 // class "PiPo": Piece + Position
8 export const PiPo
= class PiPo
{
9 // o: {piece[p], color[c], posX[x], posY[y]}
18 export const Move
= class Move
{
19 // o: {appear, vanish, [start,] [end,]}
20 // appear,vanish = arrays of PiPo
21 // start,end = coordinates to apply to trigger move visually (think castle)
23 this.appear
= o
.appear
;
24 this.vanish
= o
.vanish
;
25 this.start
= o
.start
? o
.start : { x: o
.vanish
[0].x
, y: o
.vanish
[0].y
};
26 this.end
= o
.end
? o
.end : { x: o
.appear
[0].x
, y: o
.appear
[0].y
};
30 // NOTE: x coords = top to bottom; y = left to right
31 // (from white player perspective)
32 export const ChessRules
= class ChessRules
{
36 // Some variants don't have flags:
37 static get HasFlags() {
42 static get HasCastle() {
46 // Pawns specifications
47 static get PawnSpecs() {
49 directions: { 'w': -1, 'b': 1 },
50 initShift: { w: 1, b: 1 },
53 promotions: [V
.ROOK
, V
.KNIGHT
, V
.BISHOP
, V
.QUEEN
],
55 captureBackward: false,
60 // En-passant captures need a stack of squares:
61 static get HasEnpassant() {
65 // Some variants cannot have analyse mode
66 static get CanAnalyze() {
69 // Patch: issues with javascript OOP, objects can't access static fields.
74 // Some variants show incomplete information,
75 // and thus show only a partial moves list or no list at all.
76 static get ShowMoves() {
83 // Some variants always show the same orientation
84 static get CanFlip() {
91 // Some variants use click infos:
96 static get IMAGE_EXTENSION() {
97 // All pieces should be in the SVG format
101 // Turn "wb" into "B" (for FEN)
102 static board2fen(b
) {
103 return b
[0] == "w" ? b
[1].toUpperCase() : b
[1];
106 // Turn "p" into "bp" (for board)
107 static fen2board(f
) {
108 return f
.charCodeAt() <= 90 ? "w" + f
.toLowerCase() : "b" + f
;
111 // Check if FEN describes a board situation correctly
112 static IsGoodFen(fen
) {
113 const fenParsed
= V
.ParseFen(fen
);
115 if (!V
.IsGoodPosition(fenParsed
.position
)) return false;
117 if (!fenParsed
.turn
|| !V
.IsGoodTurn(fenParsed
.turn
)) return false;
118 // 3) Check moves count
119 if (!fenParsed
.movesCount
|| !(parseInt(fenParsed
.movesCount
) >= 0))
122 if (V
.HasFlags
&& (!fenParsed
.flags
|| !V
.IsGoodFlags(fenParsed
.flags
)))
124 // 5) Check enpassant
127 (!fenParsed
.enpassant
|| !V
.IsGoodEnpassant(fenParsed
.enpassant
))
134 // Is position part of the FEN a priori correct?
135 static IsGoodPosition(position
) {
136 if (position
.length
== 0) return false;
137 const rows
= position
.split("/");
138 if (rows
.length
!= V
.size
.x
) return false;
139 let kings
= { "k": 0, "K": 0 };
140 for (let row
of rows
) {
142 for (let i
= 0; i
< row
.length
; i
++) {
143 if (['K','k'].includes(row
[i
])) kings
[row
[i
]]++;
144 if (V
.PIECES
.includes(row
[i
].toLowerCase())) sumElts
++;
146 const num
= parseInt(row
[i
]);
147 if (isNaN(num
)) return false;
151 if (sumElts
!= V
.size
.y
) return false;
153 // Both kings should be on board. Exactly one per color.
154 if (Object
.values(kings
).some(v
=> v
!= 1)) return false;
159 static IsGoodTurn(turn
) {
160 return ["w", "b"].includes(turn
);
164 static IsGoodFlags(flags
) {
165 // NOTE: a little too permissive to work with more variants
166 return !!flags
.match(/^[a-z]{4,4}$/);
169 // NOTE: not with regexp to adapt to different board sizes. (TODO?)
170 static IsGoodEnpassant(enpassant
) {
171 if (enpassant
!= "-") {
172 const ep
= V
.SquareToCoords(enpassant
);
173 if (isNaN(ep
.x
) || !V
.OnBoard(ep
)) return false;
178 // 3 --> d (column number to letter)
179 static CoordToColumn(colnum
) {
180 return String
.fromCharCode(97 + colnum
);
183 // d --> 3 (column letter to number)
184 static ColumnToCoord(column
) {
185 return column
.charCodeAt(0) - 97;
189 static SquareToCoords(sq
) {
191 // NOTE: column is always one char => max 26 columns
192 // row is counted from black side => subtraction
193 x: V
.size
.x
- parseInt(sq
.substr(1)),
194 y: sq
[0].charCodeAt() - 97
199 static CoordsToSquare(coords
) {
200 return V
.CoordToColumn(coords
.y
) + (V
.size
.x
- coords
.x
);
203 // Path to pieces (standard ones in pieces/ folder)
208 // Path to promotion pieces (usually the same)
210 return this.getPpath(m
.appear
[0].c
+ m
.appear
[0].p
);
213 // Aggregates flags into one object
215 return this.castleFlags
;
219 disaggregateFlags(flags
) {
220 this.castleFlags
= flags
;
223 // En-passant square, if any
224 getEpSquare(moveOrSquare
) {
225 if (!moveOrSquare
) return undefined;
226 if (typeof moveOrSquare
=== "string") {
227 const square
= moveOrSquare
;
228 if (square
== "-") return undefined;
229 return V
.SquareToCoords(square
);
231 // Argument is a move:
232 const move = moveOrSquare
;
233 const s
= move.start
,
237 Math
.abs(s
.x
- e
.x
) == 2 &&
238 // Next conditions for variants like Atomic or Rifle, Recycle...
239 (move.appear
.length
> 0 && move.appear
[0].p
== V
.PAWN
) &&
240 (move.vanish
.length
> 0 && move.vanish
[0].p
== V
.PAWN
)
247 return undefined; //default
250 // Can thing on square1 take thing on square2
251 canTake([x1
, y1
], [x2
, y2
]) {
252 return this.getColor(x1
, y1
) !== this.getColor(x2
, y2
);
255 // Is (x,y) on the chessboard?
256 static OnBoard(x
, y
) {
257 return x
>= 0 && x
< V
.size
.x
&& y
>= 0 && y
< V
.size
.y
;
260 // Used in interface: 'side' arg == player color
261 canIplay(side
, [x
, y
]) {
262 return this.turn
== side
&& this.getColor(x
, y
) == side
;
265 // On which squares is color under check ? (for interface)
266 getCheckSquares(color
) {
268 this.underCheck(color
)
269 // kingPos must be duplicated, because it may change:
270 ? [JSON
.parse(JSON
.stringify(this.kingPos
[color
]))]
278 // Setup the initial random (asymmetric) position
279 static GenRandInitFen(randomness
) {
282 return "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w 0 ahah -";
284 let pieces
= { w: new Array(8), b: new Array(8) };
286 // Shuffle pieces on first (and last rank if randomness == 2)
287 for (let c
of ["w", "b"]) {
288 if (c
== 'b' && randomness
== 1) {
289 pieces
['b'] = pieces
['w'];
294 let positions
= ArrayFun
.range(8);
296 // Get random squares for bishops
297 let randIndex
= 2 * randInt(4);
298 const bishop1Pos
= positions
[randIndex
];
299 // The second bishop must be on a square of different color
300 let randIndex_tmp
= 2 * randInt(4) + 1;
301 const bishop2Pos
= positions
[randIndex_tmp
];
302 // Remove chosen squares
303 positions
.splice(Math
.max(randIndex
, randIndex_tmp
), 1);
304 positions
.splice(Math
.min(randIndex
, randIndex_tmp
), 1);
306 // Get random squares for knights
307 randIndex
= randInt(6);
308 const knight1Pos
= positions
[randIndex
];
309 positions
.splice(randIndex
, 1);
310 randIndex
= randInt(5);
311 const knight2Pos
= positions
[randIndex
];
312 positions
.splice(randIndex
, 1);
314 // Get random square for queen
315 randIndex
= randInt(4);
316 const queenPos
= positions
[randIndex
];
317 positions
.splice(randIndex
, 1);
319 // Rooks and king positions are now fixed,
320 // because of the ordering rook-king-rook
321 const rook1Pos
= positions
[0];
322 const kingPos
= positions
[1];
323 const rook2Pos
= positions
[2];
325 // Finally put the shuffled pieces in the board array
326 pieces
[c
][rook1Pos
] = "r";
327 pieces
[c
][knight1Pos
] = "n";
328 pieces
[c
][bishop1Pos
] = "b";
329 pieces
[c
][queenPos
] = "q";
330 pieces
[c
][kingPos
] = "k";
331 pieces
[c
][bishop2Pos
] = "b";
332 pieces
[c
][knight2Pos
] = "n";
333 pieces
[c
][rook2Pos
] = "r";
334 flags
+= V
.CoordToColumn(rook1Pos
) + V
.CoordToColumn(rook2Pos
);
336 // Add turn + flags + enpassant
338 pieces
["b"].join("") +
339 "/pppppppp/8/8/8/8/PPPPPPPP/" +
340 pieces
["w"].join("").toUpperCase() +
341 " w 0 " + flags
+ " -"
345 // "Parse" FEN: just return untransformed string data
346 static ParseFen(fen
) {
347 const fenParts
= fen
.split(" ");
349 position: fenParts
[0],
351 movesCount: fenParts
[2]
354 if (V
.HasFlags
) Object
.assign(res
, { flags: fenParts
[nextIdx
++] });
355 if (V
.HasEnpassant
) Object
.assign(res
, { enpassant: fenParts
[nextIdx
] });
359 // Return current fen (game state)
362 this.getBaseFen() + " " +
363 this.getTurnFen() + " " +
365 (V
.HasFlags
? " " + this.getFlagsFen() : "") +
366 (V
.HasEnpassant
? " " + this.getEnpassantFen() : "")
371 // Omit movesCount, only variable allowed to differ
373 this.getBaseFen() + "_" +
375 (V
.HasFlags
? "_" + this.getFlagsFen() : "") +
376 (V
.HasEnpassant
? "_" + this.getEnpassantFen() : "")
380 // Position part of the FEN string
382 const format
= (count
) => {
383 // if more than 9 consecutive free spaces, break the integer,
384 // otherwise FEN parsing will fail.
385 if (count
<= 9) return count
;
386 // Currently only boards of size up to 11 or 12:
387 return "9" + (count
- 9);
390 for (let i
= 0; i
< V
.size
.x
; i
++) {
392 for (let j
= 0; j
< V
.size
.y
; j
++) {
393 if (this.board
[i
][j
] == V
.EMPTY
) emptyCount
++;
395 if (emptyCount
> 0) {
396 // Add empty squares in-between
397 position
+= format(emptyCount
);
400 position
+= V
.board2fen(this.board
[i
][j
]);
403 if (emptyCount
> 0) {
405 position
+= format(emptyCount
);
407 if (i
< V
.size
.x
- 1) position
+= "/"; //separate rows
416 // Flags part of the FEN string
420 for (let c
of ["w", "b"])
421 flags
+= this.castleFlags
[c
].map(V
.CoordToColumn
).join("");
425 // Enpassant part of the FEN string
427 const L
= this.epSquares
.length
;
428 if (!this.epSquares
[L
- 1]) return "-"; //no en-passant
429 return V
.CoordsToSquare(this.epSquares
[L
- 1]);
432 // Turn position fen into double array ["wb","wp","bk",...]
433 static GetBoard(position
) {
434 const rows
= position
.split("/");
435 let board
= ArrayFun
.init(V
.size
.x
, V
.size
.y
, "");
436 for (let i
= 0; i
< rows
.length
; i
++) {
438 for (let indexInRow
= 0; indexInRow
< rows
[i
].length
; indexInRow
++) {
439 const character
= rows
[i
][indexInRow
];
440 const num
= parseInt(character
);
441 // If num is a number, just shift j:
442 if (!isNaN(num
)) j
+= num
;
443 // Else: something at position i,j
444 else board
[i
][j
++] = V
.fen2board(character
);
450 // Extract (relevant) flags from fen
452 // white a-castle, h-castle, black a-castle, h-castle
453 this.castleFlags
= { w: [-1, -1], b: [-1, -1] };
454 for (let i
= 0; i
< 4; i
++) {
455 this.castleFlags
[i
< 2 ? "w" : "b"][i
% 2] =
456 V
.ColumnToCoord(fenflags
.charAt(i
));
463 // Fen string fully describes the game state
466 // In printDiagram() fen isn't supply because only getPpath() is used
467 // TODO: find a better solution!
469 const fenParsed
= V
.ParseFen(fen
);
470 this.board
= V
.GetBoard(fenParsed
.position
);
471 this.turn
= fenParsed
.turn
[0]; //[0] to work with MarseilleRules
472 this.movesCount
= parseInt(fenParsed
.movesCount
);
473 this.setOtherVariables(fen
);
476 // Scan board for kings positions
478 this.INIT_COL_KING
= { w: -1, b: -1 };
479 // Squares of white and black king:
480 this.kingPos
= { w: [-1, -1], b: [-1, -1] };
481 const fenRows
= V
.ParseFen(fen
).position
.split("/");
482 const startRow
= { 'w': V
.size
.x
- 1, 'b': 0 };
483 for (let i
= 0; i
< fenRows
.length
; i
++) {
484 let k
= 0; //column index on board
485 for (let j
= 0; j
< fenRows
[i
].length
; j
++) {
486 switch (fenRows
[i
].charAt(j
)) {
488 this.kingPos
["b"] = [i
, k
];
489 this.INIT_COL_KING
["b"] = k
;
492 this.kingPos
["w"] = [i
, k
];
493 this.INIT_COL_KING
["w"] = k
;
496 const num
= parseInt(fenRows
[i
].charAt(j
));
497 if (!isNaN(num
)) k
+= num
- 1;
505 // Some additional variables from FEN (variant dependant)
506 setOtherVariables(fen
) {
507 // Set flags and enpassant:
508 const parsedFen
= V
.ParseFen(fen
);
509 if (V
.HasFlags
) this.setFlags(parsedFen
.flags
);
510 if (V
.HasEnpassant
) {
512 parsedFen
.enpassant
!= "-"
513 ? this.getEpSquare(parsedFen
.enpassant
)
515 this.epSquares
= [epSq
];
517 // Search for kings positions:
521 /////////////////////
525 return { x: 8, y: 8 };
528 // Color of thing on square (i,j). 'undefined' if square is empty
530 return this.board
[i
][j
].charAt(0);
533 // Piece type on square (i,j). 'undefined' if square is empty
535 return this.board
[i
][j
].charAt(1);
538 // Get opponent color
539 static GetOppCol(color
) {
540 return color
== "w" ? "b" : "w";
543 // Pieces codes (for a clearer code)
550 static get KNIGHT() {
553 static get BISHOP() {
564 static get PIECES() {
565 return [V
.PAWN
, V
.ROOK
, V
.KNIGHT
, V
.BISHOP
, V
.QUEEN
, V
.KING
];
573 // Some pieces movements
604 // All possible moves from selected square
605 getPotentialMovesFrom([x
, y
]) {
606 switch (this.getPiece(x
, y
)) {
608 return this.getPotentialPawnMoves([x
, y
]);
610 return this.getPotentialRookMoves([x
, y
]);
612 return this.getPotentialKnightMoves([x
, y
]);
614 return this.getPotentialBishopMoves([x
, y
]);
616 return this.getPotentialQueenMoves([x
, y
]);
618 return this.getPotentialKingMoves([x
, y
]);
620 return []; //never reached
623 // Build a regular move from its initial and destination squares.
624 // tr: transformation
625 getBasicMove([sx
, sy
], [ex
, ey
], tr
) {
626 const initColor
= this.getColor(sx
, sy
);
627 const initPiece
= this.getPiece(sx
, sy
);
633 c: tr
? tr
.c : initColor
,
634 p: tr
? tr
.p : initPiece
647 // The opponent piece disappears if we take it
648 if (this.board
[ex
][ey
] != V
.EMPTY
) {
653 c: this.getColor(ex
, ey
),
654 p: this.getPiece(ex
, ey
)
662 // Generic method to find possible moves of non-pawn pieces:
663 // "sliding or jumping"
664 getSlideNJumpMoves([x
, y
], steps
, oneStep
) {
666 outerLoop: for (let step
of steps
) {
669 while (V
.OnBoard(i
, j
) && this.board
[i
][j
] == V
.EMPTY
) {
670 moves
.push(this.getBasicMove([x
, y
], [i
, j
]));
671 if (oneStep
) continue outerLoop
;
675 if (V
.OnBoard(i
, j
) && this.canTake([x
, y
], [i
, j
]))
676 moves
.push(this.getBasicMove([x
, y
], [i
, j
]));
681 // Special case of en-passant captures: treated separately
682 getEnpassantCaptures([x
, y
], shiftX
) {
683 const Lep
= this.epSquares
.length
;
684 const epSquare
= this.epSquares
[Lep
- 1]; //always at least one element
685 let enpassantMove
= null;
688 epSquare
.x
== x
+ shiftX
&&
689 Math
.abs(epSquare
.y
- y
) == 1
691 enpassantMove
= this.getBasicMove([x
, y
], [epSquare
.x
, epSquare
.y
]);
692 enpassantMove
.vanish
.push({
695 // Captured piece is usually a pawn, but next line seems harmless
696 p: this.getPiece(x
, epSquare
.y
),
697 c: this.getColor(x
, epSquare
.y
)
700 return !!enpassantMove
? [enpassantMove
] : [];
703 // Consider all potential promotions:
704 addPawnMoves([x1
, y1
], [x2
, y2
], moves
, promotions
) {
705 let finalPieces
= [V
.PAWN
];
706 const color
= this.turn
;
707 const lastRank
= (color
== "w" ? 0 : V
.size
.x
- 1);
708 if (x2
== lastRank
) {
709 // promotions arg: special override for Hiddenqueen variant
710 if (!!promotions
) finalPieces
= promotions
;
711 else if (!!V
.PawnSpecs
.promotions
)
712 finalPieces
= V
.PawnSpecs
.promotions
;
715 for (let piece
of finalPieces
) {
716 tr
= (piece
!= V
.PAWN
? { c: color
, p: piece
} : null);
717 moves
.push(this.getBasicMove([x1
, y1
], [x2
, y2
], tr
));
721 // What are the pawn moves from square x,y ?
722 getPotentialPawnMoves([x
, y
], promotions
) {
723 const color
= this.turn
;
724 const [sizeX
, sizeY
] = [V
.size
.x
, V
.size
.y
];
725 const pawnShiftX
= V
.PawnSpecs
.directions
[color
];
726 const firstRank
= (color
== "w" ? sizeX
- 1 : 0);
728 // Pawn movements in shiftX direction:
729 const getPawnMoves
= (shiftX
) => {
731 // NOTE: next condition is generally true (no pawn on last rank)
732 if (x
+ shiftX
>= 0 && x
+ shiftX
< sizeX
) {
733 if (this.board
[x
+ shiftX
][y
] == V
.EMPTY
) {
734 // One square forward
735 this.addPawnMoves([x
, y
], [x
+ shiftX
, y
], moves
, promotions
);
736 // Next condition because pawns on 1st rank can generally jump
738 V
.PawnSpecs
.twoSquares
&&
740 (color
== 'w' && x
>= V
.size
.x
- 1 - V
.PawnSpecs
.initShift
['w'])
742 (color
== 'b' && x
<= V
.PawnSpecs
.initShift
['b'])
745 if (this.board
[x
+ 2 * shiftX
][y
] == V
.EMPTY
) {
747 moves
.push(this.getBasicMove([x
, y
], [x
+ 2 * shiftX
, y
]));
749 V
.PawnSpecs
.threeSquares
&&
750 this.board
[x
+ 3 * shiftX
][y
] == V
.EMPTY
752 // Three squares jump
753 moves
.push(this.getBasicMove([x
, y
], [x
+ 3 * shiftX
, y
]));
759 if (V
.PawnSpecs
.canCapture
) {
760 for (let shiftY
of [-1, 1]) {
766 this.board
[x
+ shiftX
][y
+ shiftY
] != V
.EMPTY
&&
767 this.canTake([x
, y
], [x
+ shiftX
, y
+ shiftY
])
770 [x
, y
], [x
+ shiftX
, y
+ shiftY
],
775 V
.PawnSpecs
.captureBackward
&&
776 x
- shiftX
>= 0 && x
- shiftX
< V
.size
.x
&&
777 this.board
[x
- shiftX
][y
+ shiftY
] != V
.EMPTY
&&
778 this.canTake([x
, y
], [x
- shiftX
, y
+ shiftY
])
781 [x
, y
], [x
+ shiftX
, y
+ shiftY
],
792 let pMoves
= getPawnMoves(pawnShiftX
);
793 if (V
.PawnSpecs
.bidirectional
)
794 pMoves
= pMoves
.concat(getPawnMoves(-pawnShiftX
));
796 if (V
.HasEnpassant
) {
797 // NOTE: backward en-passant captures are not considered
798 // because no rules define them (for now).
799 Array
.prototype.push
.apply(
801 this.getEnpassantCaptures([x
, y
], pawnShiftX
)
808 // What are the rook moves from square x,y ?
809 getPotentialRookMoves(sq
) {
810 return this.getSlideNJumpMoves(sq
, V
.steps
[V
.ROOK
]);
813 // What are the knight moves from square x,y ?
814 getPotentialKnightMoves(sq
) {
815 return this.getSlideNJumpMoves(sq
, V
.steps
[V
.KNIGHT
], "oneStep");
818 // What are the bishop moves from square x,y ?
819 getPotentialBishopMoves(sq
) {
820 return this.getSlideNJumpMoves(sq
, V
.steps
[V
.BISHOP
]);
823 // What are the queen moves from square x,y ?
824 getPotentialQueenMoves(sq
) {
825 return this.getSlideNJumpMoves(
827 V
.steps
[V
.ROOK
].concat(V
.steps
[V
.BISHOP
])
831 // What are the king moves from square x,y ?
832 getPotentialKingMoves(sq
) {
833 // Initialize with normal moves
834 let moves
= this.getSlideNJumpMoves(
836 V
.steps
[V
.ROOK
].concat(V
.steps
[V
.BISHOP
]),
839 if (V
.HasCastle
) moves
= moves
.concat(this.getCastleMoves(sq
));
843 // "castleInCheck" arg to let some variants castle under check
844 getCastleMoves([x
, y
], castleInCheck
) {
845 const c
= this.getColor(x
, y
);
846 if (x
!= (c
== "w" ? V
.size
.x
- 1 : 0) || y
!= this.INIT_COL_KING
[c
])
847 return []; //x isn't first rank, or king has moved (shortcut)
850 const oppCol
= V
.GetOppCol(c
);
854 const finalSquares
= [
856 [V
.size
.y
- 2, V
.size
.y
- 3]
861 castleSide
++ //large, then small
863 if (this.castleFlags
[c
][castleSide
] >= V
.size
.y
) continue;
864 // If this code is reached, rook and king are on initial position
866 // NOTE: in some variants this is not a rook
867 const rookPos
= this.castleFlags
[c
][castleSide
];
868 if (this.board
[x
][rookPos
] == V
.EMPTY
|| this.getColor(x
, rookPos
) != c
)
869 // Rook is not here, or changed color (see Benedict)
872 // Nothing on the path of the king ? (and no checks)
873 const castlingPiece
= this.getPiece(x
, rookPos
);
874 const finDist
= finalSquares
[castleSide
][0] - y
;
875 let step
= finDist
/ Math
.max(1, Math
.abs(finDist
));
879 // NOTE: "castling" arg is used by some variants (Monster),
880 // where "isAttacked" is overloaded in an infinite-recursive way.
881 (!castleInCheck
&& this.isAttacked([x
, i
], oppCol
, "castling")) ||
882 (this.board
[x
][i
] != V
.EMPTY
&&
883 // NOTE: next check is enough, because of chessboard constraints
884 (this.getColor(x
, i
) != c
||
885 ![V
.KING
, castlingPiece
].includes(this.getPiece(x
, i
))))
887 continue castlingCheck
;
890 } while (i
!= finalSquares
[castleSide
][0]);
892 // Nothing on the path to the rook?
893 step
= castleSide
== 0 ? -1 : 1;
894 for (i
= y
+ step
; i
!= rookPos
; i
+= step
) {
895 if (this.board
[x
][i
] != V
.EMPTY
) continue castlingCheck
;
898 // Nothing on final squares, except maybe king and castling rook?
899 for (i
= 0; i
< 2; i
++) {
901 finalSquares
[castleSide
][i
] != rookPos
&&
902 this.board
[x
][finalSquares
[castleSide
][i
]] != V
.EMPTY
&&
904 this.getPiece(x
, finalSquares
[castleSide
][i
]) != V
.KING
||
905 this.getColor(x
, finalSquares
[castleSide
][i
]) != c
908 continue castlingCheck
;
912 // If this code is reached, castle is valid
918 y: finalSquares
[castleSide
][0],
924 y: finalSquares
[castleSide
][1],
930 new PiPo({ x: x
, y: y
, p: V
.KING
, c: c
}),
931 new PiPo({ x: x
, y: rookPos
, p: castlingPiece
, c: c
})
934 Math
.abs(y
- rookPos
) <= 2
935 ? { x: x
, y: rookPos
}
936 : { x: x
, y: y
+ 2 * (castleSide
== 0 ? -1 : 1) }
947 // For the interface: possible moves for the current turn from square sq
948 getPossibleMovesFrom(sq
) {
949 return this.filterValid(this.getPotentialMovesFrom(sq
));
952 // TODO: promotions (into R,B,N,Q) should be filtered only once
954 if (moves
.length
== 0) return [];
955 const color
= this.turn
;
956 return moves
.filter(m
=> {
958 const res
= !this.underCheck(color
);
964 getAllPotentialMoves() {
965 const color
= this.turn
;
966 let potentialMoves
= [];
967 for (let i
= 0; i
< V
.size
.x
; i
++) {
968 for (let j
= 0; j
< V
.size
.y
; j
++) {
969 if (this.board
[i
][j
] != V
.EMPTY
&& this.getColor(i
, j
) == color
) {
970 Array
.prototype.push
.apply(
972 this.getPotentialMovesFrom([i
, j
])
977 return potentialMoves
;
980 // Search for all valid moves considering current turn
981 // (for engine and game end)
983 return this.filterValid(this.getAllPotentialMoves());
986 // Stop at the first move found
987 // TODO: not really, it explores all moves from a square (one is enough).
989 const color
= this.turn
;
990 for (let i
= 0; i
< V
.size
.x
; i
++) {
991 for (let j
= 0; j
< V
.size
.y
; j
++) {
992 if (this.getColor(i
, j
) == color
) {
993 const moves
= this.getPotentialMovesFrom([i
, j
]);
994 if (moves
.length
> 0) {
995 for (let k
= 0; k
< moves
.length
; k
++) {
996 if (this.filterValid([moves
[k
]]).length
> 0) return true;
1005 // Check if pieces of given color are attacking (king) on square x,y
1006 isAttacked(sq
, color
) {
1008 this.isAttackedByPawn(sq
, color
) ||
1009 this.isAttackedByRook(sq
, color
) ||
1010 this.isAttackedByKnight(sq
, color
) ||
1011 this.isAttackedByBishop(sq
, color
) ||
1012 this.isAttackedByQueen(sq
, color
) ||
1013 this.isAttackedByKing(sq
, color
)
1017 // Generic method for non-pawn pieces ("sliding or jumping"):
1018 // is x,y attacked by a piece of given color ?
1019 isAttackedBySlideNJump([x
, y
], color
, piece
, steps
, oneStep
) {
1020 for (let step
of steps
) {
1021 let rx
= x
+ step
[0],
1023 while (V
.OnBoard(rx
, ry
) && this.board
[rx
][ry
] == V
.EMPTY
&& !oneStep
) {
1028 V
.OnBoard(rx
, ry
) &&
1029 this.getPiece(rx
, ry
) == piece
&&
1030 this.getColor(rx
, ry
) == color
1038 // Is square x,y attacked by 'color' pawns ?
1039 isAttackedByPawn([x
, y
], color
) {
1040 const pawnShift
= (color
== "w" ? 1 : -1);
1041 if (x
+ pawnShift
>= 0 && x
+ pawnShift
< V
.size
.x
) {
1042 for (let i
of [-1, 1]) {
1046 this.getPiece(x
+ pawnShift
, y
+ i
) == V
.PAWN
&&
1047 this.getColor(x
+ pawnShift
, y
+ i
) == color
1056 // Is square x,y attacked by 'color' rooks ?
1057 isAttackedByRook(sq
, color
) {
1058 return this.isAttackedBySlideNJump(sq
, color
, V
.ROOK
, V
.steps
[V
.ROOK
]);
1061 // Is square x,y attacked by 'color' knights ?
1062 isAttackedByKnight(sq
, color
) {
1063 return this.isAttackedBySlideNJump(
1072 // Is square x,y attacked by 'color' bishops ?
1073 isAttackedByBishop(sq
, color
) {
1074 return this.isAttackedBySlideNJump(sq
, color
, V
.BISHOP
, V
.steps
[V
.BISHOP
]);
1077 // Is square x,y attacked by 'color' queens ?
1078 isAttackedByQueen(sq
, color
) {
1079 return this.isAttackedBySlideNJump(
1083 V
.steps
[V
.ROOK
].concat(V
.steps
[V
.BISHOP
])
1087 // Is square x,y attacked by 'color' king(s) ?
1088 isAttackedByKing(sq
, color
) {
1089 return this.isAttackedBySlideNJump(
1093 V
.steps
[V
.ROOK
].concat(V
.steps
[V
.BISHOP
]),
1098 // Is color under check after his move ?
1100 return this.isAttacked(this.kingPos
[color
], V
.GetOppCol(color
));
1106 // Apply a move on board
1107 static PlayOnBoard(board
, move) {
1108 for (let psq
of move.vanish
) board
[psq
.x
][psq
.y
] = V
.EMPTY
;
1109 for (let psq
of move.appear
) board
[psq
.x
][psq
.y
] = psq
.c
+ psq
.p
;
1111 // Un-apply the played move
1112 static UndoOnBoard(board
, move) {
1113 for (let psq
of move.appear
) board
[psq
.x
][psq
.y
] = V
.EMPTY
;
1114 for (let psq
of move.vanish
) board
[psq
.x
][psq
.y
] = psq
.c
+ psq
.p
;
1121 // if (!this.states) this.states = [];
1122 // const stateFen = this.getFen() + JSON.stringify(this.kingPos);
1123 // this.states.push(stateFen);
1126 // Save flags (for undo)
1127 if (V
.HasFlags
) move.flags
= JSON
.stringify(this.aggregateFlags());
1128 if (V
.HasEnpassant
) this.epSquares
.push(this.getEpSquare(move));
1129 V
.PlayOnBoard(this.board
, move);
1130 this.turn
= V
.GetOppCol(this.turn
);
1132 this.postPlay(move);
1135 updateCastleFlags(move, piece
) {
1136 const c
= V
.GetOppCol(this.turn
);
1137 const firstRank
= (c
== "w" ? V
.size
.x
- 1 : 0);
1138 // Update castling flags if rooks are moved
1139 const oppCol
= this.turn
;
1140 const oppFirstRank
= V
.size
.x
- 1 - firstRank
;
1141 if (piece
== V
.KING
&& move.appear
.length
> 0)
1142 this.castleFlags
[c
] = [V
.size
.y
, V
.size
.y
];
1144 move.start
.x
== firstRank
&& //our rook moves?
1145 this.castleFlags
[c
].includes(move.start
.y
)
1147 const flagIdx
= (move.start
.y
== this.castleFlags
[c
][0] ? 0 : 1);
1148 this.castleFlags
[c
][flagIdx
] = V
.size
.y
;
1150 // NOTE: not "else if" because a rook could take an opposing rook
1152 move.end
.x
== oppFirstRank
&& //we took opponent rook?
1153 this.castleFlags
[oppCol
].includes(move.end
.y
)
1155 const flagIdx
= (move.end
.y
== this.castleFlags
[oppCol
][0] ? 0 : 1);
1156 this.castleFlags
[oppCol
][flagIdx
] = V
.size
.y
;
1160 // After move is played, update variables + flags
1162 const c
= V
.GetOppCol(this.turn
);
1163 let piece
= undefined;
1164 if (move.vanish
.length
>= 1)
1165 // Usual case, something is moved
1166 piece
= move.vanish
[0].p
;
1168 // Crazyhouse-like variants
1169 piece
= move.appear
[0].p
;
1171 // Update king position + flags
1172 if (piece
== V
.KING
&& move.appear
.length
> 0) {
1173 this.kingPos
[c
][0] = move.appear
[0].x
;
1174 this.kingPos
[c
][1] = move.appear
[0].y
;
1176 if (V
.HasCastle
) this.updateCastleFlags(move, piece
);
1183 if (V
.HasEnpassant
) this.epSquares
.pop();
1184 if (V
.HasFlags
) this.disaggregateFlags(JSON
.parse(move.flags
));
1185 V
.UndoOnBoard(this.board
, move);
1186 this.turn
= V
.GetOppCol(this.turn
);
1188 this.postUndo(move);
1191 // const stateFen = this.getFen() + JSON.stringify(this.kingPos);
1192 // if (stateFen != this.states[this.states.length-1]) debugger;
1193 // this.states.pop();
1196 // After move is undo-ed *and flags resetted*, un-update other variables
1197 // TODO: more symmetry, by storing flags increment in move (?!)
1199 // (Potentially) Reset king position
1200 const c
= this.getColor(move.start
.x
, move.start
.y
);
1201 if (this.getPiece(move.start
.x
, move.start
.y
) == V
.KING
)
1202 this.kingPos
[c
] = [move.start
.x
, move.start
.y
];
1208 // What is the score ? (Interesting if game is over)
1210 if (this.atLeastOneMove()) return "*";
1212 const color
= this.turn
;
1213 // No valid move: stalemate or checkmate?
1214 if (!this.underCheck(color
)) return "1/2";
1216 return (color
== "w" ? "0-1" : "1-0");
1223 static get VALUES() {
1234 // "Checkmate" (unreachable eval)
1235 static get INFINITY() {
1239 // At this value or above, the game is over
1240 static get THRESHOLD_MATE() {
1244 // Search depth: 1,2 for e.g. higher branching factor, 4 for smaller
1245 static get SEARCH_DEPTH() {
1250 const maxeval
= V
.INFINITY
;
1251 const color
= this.turn
;
1252 let moves1
= this.getAllValidMoves();
1254 if (moves1
.length
== 0)
1255 // TODO: this situation should not happen
1258 // Rank moves using a min-max at depth 2 (if search_depth >= 2!)
1259 for (let i
= 0; i
< moves1
.length
; i
++) {
1260 this.play(moves1
[i
]);
1261 const score1
= this.getCurrentScore();
1262 if (score1
!= "*") {
1266 : (score1
== "1-0" ? 1 : -1) * maxeval
;
1268 if (V
.SEARCH_DEPTH
== 1 || score1
!= "*") {
1269 if (!moves1
[i
].eval
) moves1
[i
].eval
= this.evalPosition();
1270 this.undo(moves1
[i
]);
1273 // Initial self evaluation is very low: "I'm checkmated"
1274 moves1
[i
].eval
= (color
== "w" ? -1 : 1) * maxeval
;
1275 // Initial enemy evaluation is very low too, for him
1276 let eval2
= (color
== "w" ? 1 : -1) * maxeval
;
1277 // Second half-move:
1278 let moves2
= this.getAllValidMoves();
1279 for (let j
= 0; j
< moves2
.length
; j
++) {
1280 this.play(moves2
[j
]);
1281 const score2
= this.getCurrentScore();
1282 let evalPos
= 0; //1/2 value
1285 evalPos
= this.evalPosition();
1295 (color
== "w" && evalPos
< eval2
) ||
1296 (color
== "b" && evalPos
> eval2
)
1300 this.undo(moves2
[j
]);
1303 (color
== "w" && eval2
> moves1
[i
].eval
) ||
1304 (color
== "b" && eval2
< moves1
[i
].eval
)
1306 moves1
[i
].eval
= eval2
;
1308 this.undo(moves1
[i
]);
1310 moves1
.sort((a
, b
) => {
1311 return (color
== "w" ? 1 : -1) * (b
.eval
- a
.eval
);
1313 // console.log(moves1.map(m => { return [this.getNotation(m), m.eval]; }));
1315 // Skip depth 3+ if we found a checkmate (or if we are checkmated in 1...)
1316 if (V
.SEARCH_DEPTH
>= 3 && Math
.abs(moves1
[0].eval
) < V
.THRESHOLD_MATE
) {
1317 for (let i
= 0; i
< moves1
.length
; i
++) {
1318 this.play(moves1
[i
]);
1319 // 0.1 * oldEval : heuristic to avoid some bad moves (not all...)
1321 0.1 * moves1
[i
].eval
+
1322 this.alphabeta(V
.SEARCH_DEPTH
- 1, -maxeval
, maxeval
);
1323 this.undo(moves1
[i
]);
1325 moves1
.sort((a
, b
) => {
1326 return (color
== "w" ? 1 : -1) * (b
.eval
- a
.eval
);
1330 let candidates
= [0];
1331 for (let i
= 1; i
< moves1
.length
&& moves1
[i
].eval
== moves1
[0].eval
; i
++)
1333 return moves1
[candidates
[randInt(candidates
.length
)]];
1336 alphabeta(depth
, alpha
, beta
) {
1337 const maxeval
= V
.INFINITY
;
1338 const color
= this.turn
;
1339 const score
= this.getCurrentScore();
1341 return score
== "1/2" ? 0 : (score
== "1-0" ? 1 : -1) * maxeval
;
1342 if (depth
== 0) return this.evalPosition();
1343 const moves
= this.getAllValidMoves();
1344 let v
= color
== "w" ? -maxeval : maxeval
;
1346 for (let i
= 0; i
< moves
.length
; i
++) {
1347 this.play(moves
[i
]);
1348 v
= Math
.max(v
, this.alphabeta(depth
- 1, alpha
, beta
));
1349 this.undo(moves
[i
]);
1350 alpha
= Math
.max(alpha
, v
);
1351 if (alpha
>= beta
) break; //beta cutoff
1356 for (let i
= 0; i
< moves
.length
; i
++) {
1357 this.play(moves
[i
]);
1358 v
= Math
.min(v
, this.alphabeta(depth
- 1, alpha
, beta
));
1359 this.undo(moves
[i
]);
1360 beta
= Math
.min(beta
, v
);
1361 if (alpha
>= beta
) break; //alpha cutoff
1369 // Just count material for now
1370 for (let i
= 0; i
< V
.size
.x
; i
++) {
1371 for (let j
= 0; j
< V
.size
.y
; j
++) {
1372 if (this.board
[i
][j
] != V
.EMPTY
) {
1373 const sign
= this.getColor(i
, j
) == "w" ? 1 : -1;
1374 evaluation
+= sign
* V
.VALUES
[this.getPiece(i
, j
)];
1381 /////////////////////////
1382 // MOVES + GAME NOTATION
1383 /////////////////////////
1385 // Context: just before move is played, turn hasn't changed
1386 // TODO: un-ambiguous notation (switch on piece type, check directions...)
1388 if (move.appear
.length
== 2 && move.appear
[0].p
== V
.KING
)
1390 return move.end
.y
< move.start
.y
? "0-0-0" : "0-0";
1392 // Translate final square
1393 const finalSquare
= V
.CoordsToSquare(move.end
);
1395 const piece
= this.getPiece(move.start
.x
, move.start
.y
);
1396 if (piece
== V
.PAWN
) {
1399 if (move.vanish
.length
> move.appear
.length
) {
1401 const startColumn
= V
.CoordToColumn(move.start
.y
);
1402 notation
= startColumn
+ "x" + finalSquare
;
1404 else notation
= finalSquare
;
1405 if (move.appear
.length
> 0 && move.appear
[0].p
!= V
.PAWN
)
1407 notation
+= "=" + move.appear
[0].p
.toUpperCase();
1412 piece
.toUpperCase() +
1413 (move.vanish
.length
> move.appear
.length
? "x" : "") +
1418 static GetUnambiguousNotation(move) {
1419 // Machine-readable format with all the informations about the move
1421 (!!move.start
&& V
.OnBoard(move.start
.x
, move.start
.y
)
1422 ? V
.CoordsToSquare(move.start
)
1425 (!!move.end
&& V
.OnBoard(move.end
.x
, move.end
.y
)
1426 ? V
.CoordsToSquare(move.end
)
1429 (!!move.appear
&& move.appear
.length
> 0
1430 ? move.appear
.map(a
=>
1431 a
.c
+ a
.p
+ V
.CoordsToSquare({ x: a
.x
, y: a
.y
})).join(".")
1434 (!!move.vanish
&& move.vanish
.length
> 0
1435 ? move.vanish
.map(a
=>
1436 a
.c
+ a
.p
+ V
.CoordsToSquare({ x: a
.x
, y: a
.y
})).join(".")