Commit | Line | Data |
---|---|---|
a961f8a1 BA |
1 | #' @include z_plotHelper.R |
2 | ||
3 | #' @title Plot forecasts/observations | |
4 | #' | |
5 | #' @description Plot the measures at one station versus all experts forecasts. | |
6 | #' | |
7 | #' @param r Output of \code{\link{runAlgorithm}}. | |
8 | #' @param station Name or index of the station to consider. Default: the first one | |
9 | #' @param interval Time interval for the plot. Default: all time range. | |
10 | #' @param experts Subset of experts for the plot. Default: all experts. | |
11 | #' @param ... Additional arguments to be passed to graphics::plot method. | |
12 | #' | |
13 | #' @export | |
14 | plotCurves = function(r, station=1, interval=1:(nrow(r$data)/length(r$stations)), experts=r$experts, cols=rainbow(length(experts)), ...) | |
15 | { | |
16 | if (is.character(station)) | |
17 | station = match(station, r$stations) | |
18 | if (is.numeric(experts)) | |
19 | experts = r$experts[experts] | |
20 | ||
21 | XY = subset(r$data[interval,], subset = (Station == station), select = c(experts,"Measure")) | |
22 | indices = getNoNAindices(XY) | |
23 | XY = XY[indices,] | |
24 | X = as.matrix(XY[,names(XY) %in% experts]) | |
25 | Y = XY[,"Measure"] | |
26 | ||
27 | yRange = range(XY) | |
28 | par(mar=c(5,4.5,1,1), cex=1.5) | |
29 | for (i in 1:length(experts)) | |
30 | { | |
31 | plot(X[,i],ylim=yRange,type="l",lty="dotted",col=cols[i],xlab="",ylab="",xaxt="n",yaxt="n", lwd=2, ...) | |
32 | par(new=TRUE) | |
33 | } | |
34 | plot(Y, type="l", ylim=yRange, xlab="", ylab="", lwd=2, cex.axis=1.5, ...) | |
35 | title(xlab="Time",ylab="Forecasts / Measures", cex.lab=1.6) | |
36 | legend("topright", title="Historical PM10",lwd=c(2,1),lty=c("solid","dotted"),horiz=TRUE,legend=c("Measures","Forecasts")) | |
37 | } | |
38 | ||
39 | #' @title Plot error | |
40 | #' | |
41 | #' @description Plot the absolute error over time at one station. | |
42 | #' | |
43 | #' @param r Output of \code{\link{runAlgorithm}}. | |
44 | #' @param station Name or index of the station to consider. Default: the first one | |
45 | #' @param start First index to consider (too much variability in early errors) | |
46 | #' @param noNA TRUE to show only errors associated with full lines (old behavior) | |
47 | #' @param ... Additional arguments to be passed to graphics::plot method. | |
48 | #' | |
49 | #' @export | |
50 | plotError = function(r, station=1, start=1, noNA=TRUE, ...) | |
51 | { | |
52 | if (is.character(station)) | |
53 | station = match(station, r$stations) | |
54 | ||
55 | XY = subset(r$data, subset = (Station == station), select = c(r$experts,"Measure","Prediction")) | |
56 | Y = XY[,"Measure"] | |
57 | hatY = XY[,"Prediction"] | |
58 | indices = !is.na(Y) & !is.na(hatY) | |
59 | if (noNA) | |
60 | { | |
61 | X = XY[,names(XY) %in% r$experts] | |
62 | indices = indices & getNoNAindices(X) | |
63 | } | |
64 | Y = Y[indices] | |
65 | hatY = hatY[indices] | |
66 | ||
67 | error = abs(Y - hatY) | |
68 | par(mar=c(5,4.5,1,1), cex=1.5) | |
69 | plot(error, type="l", xaxt="n", xlab="Time",ylab="L1 error", cex.lab=1.6, cex.axis=1.5, ...) | |
70 | axis(side=1, at=(seq(from=start,to=length(Y),by=30) - start), labels=seq(from=start,to=length(Y),by=30), cex.axis=1.5) | |
71 | } | |
72 | ||
73 | #' @title Plot regret | |
74 | #' | |
75 | #' @description Plot the regret over time at one station. | |
76 | #' | |
77 | #' @param r Output of \code{\link{runAlgorithm}}. | |
78 | #' @param vs Linear weights to compare with. Can be obtained by the \code{getBestXXX} methods, or by any other mean. | |
79 | #' @param station Name or index of the station to consider. Default: the first one | |
80 | #' @param start First index to consider (too much variability in early errors) | |
81 | #' @param ... Additional arguments to be passed to graphics::plot method. | |
82 | #' | |
83 | #' @export | |
84 | plotRegret = function(r, vs, station=1, start=1, ...) | |
85 | { | |
86 | if (is.character(station)) | |
87 | station = match(station, r$stations) | |
88 | ||
89 | XY = subset(r$data, subset = (Station == station), select = c(r$experts,"Measure","Prediction")) | |
90 | X = XY[,names(XY) %in% r$experts] | |
91 | Y = XY[,"Measure"] | |
92 | hatY = XY[,"Prediction"] | |
93 | ||
94 | indices = !is.na(Y) & !is.na(hatY) & getNoNAindices(X) | |
95 | X = as.matrix(X[indices,]) | |
96 | Y = Y[indices] | |
97 | hatY = hatY[indices] | |
98 | ||
99 | error2 = abs(Y - hatY)^2 | |
100 | vsError2 = abs(Y - X %*% vs)^2 | |
101 | cumErr2 = cumsum(error2) / seq_along(error2) | |
102 | cumVsErr2 = cumsum(vsError2) / seq_along(vsError2) | |
103 | regret = cumErr2 - cumVsErr2 | |
104 | ||
105 | par(mar=c(5,4.5,1,1), cex=1.5) | |
106 | plot(regret, type="l", xaxt="n", xlab="Time", ylab="Regret", cex.lab=1.6, cex.axis=1.5, ...) | |
107 | abline(a=0., b=0., col=2) | |
108 | axis(side=1, at=(seq(from=start,to=length(Y),by=30) - start), labels=seq(from=start,to=length(Y),by=30), cex.axis=1.5) | |
109 | } | |
110 | ||
111 | #' @title Plot predicted/expected cloud | |
112 | #' | |
113 | #' @description Plot the cloud of forecasts/observations + statistical indicators. | |
114 | #' | |
115 | #' @param r Output of \code{\link{runAlgorithm}}. | |
116 | #' @param thresh Threshold to consider for alerts (usually 30 or 50) | |
117 | #' @param hintThresh thresholds to draw on the plot to help visualization. Often \code{c(30,50,80)} | |
118 | #' @param station Name or index of the station to consider. Default: the first one | |
119 | #' @param noNA TRUE to show only errors associated with full lines (old behavior) | |
120 | #' @param ... Additional arguments to be passed to graphics::plot method. | |
121 | #' | |
122 | #' @export | |
123 | plotCloud = function(r, thresh=30, hintThresh=c(30,50,80), station=1, noNA=TRUE, ...) | |
124 | { | |
125 | if (is.character(station)) | |
126 | station = match(station, r$stations) | |
127 | ||
128 | XY = subset(r$data, subset = (Station == station), select = c(r$experts,"Measure","Prediction")) | |
129 | Y = XY[,"Measure"] | |
130 | hatY = XY[,"Prediction"] | |
131 | indices = !is.na(Y) & !is.na(hatY) | |
132 | if (noNA) | |
133 | { | |
134 | X = XY[,names(XY) %in% r$experts] | |
135 | indices = indices & getNoNAindices(X) | |
136 | } | |
137 | Y = Y[indices] | |
138 | hatY = hatY[indices] | |
139 | ||
140 | indics = getIndicators(r, thresh, station, noNA) | |
141 | ||
142 | par(mar=c(5,5,3,2), cex=1.5) | |
143 | plot(Y, hatY, xlab="Measured PM10", ylab="Predicted PM10", | |
144 | cex.lab=1.6, cex.axis=1.5, xlim=c(0,120), ylim=c(0,120), ...) | |
145 | abline(0,1,h=hintThresh,v=hintThresh,col=2,lwd=2) | |
146 | # legend("topleft",legend=c(paste("EV ",indics$EV),paste("RMSE ",indics$RMSE)),cex=1.2) | |
147 | legend("topleft",legend=paste("RMSE ",indics$RMSE)) | |
148 | legend("bottomright",legend=c(paste("TS ",indics$TS))) | |
149 | } |