c7dab9ff |
1 | #' Main function |
2 | #' |
3 | #' @param X matrix of covariates (of size n*p) |
4 | #' @param Y matrix of responses (of size n*m) |
5 | #' @param procedure among 'LassoMLE' or 'LassoRank' |
6 | #' @param selecMod method to select a model among 'SlopeHeuristic', 'BIC', 'AIC' |
7 | #' @param gamma integer for the power in the penaly, by default = 1 |
8 | #' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10 |
9 | #' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100 |
10 | #' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4 |
11 | #' @param kmin integer, minimum number of clusters, by default = 2 |
12 | #' @param kmax integer, maximum number of clusters, by default = 10 |
13 | #' @param rang.min integer, minimum rank in the low rank procedure, by default = 1 |
14 | #' @param rang.max integer, maximum rank in the |
15 | #' @return a list with estimators of parameters |
16 | #' @export |
17 | #----------------------------------------------------------------------- |
18 | valse = function(X,Y,procedure,selecMod,gamma = 1,mini = 10, |
19 | maxi = 100,eps = 1e-4,kmin = 2,kmax = 10, |
20 | rang.min = 1,rang.max = 10) { |
21 | ################################## |
22 | #core workflow: compute all models |
23 | ################################## |
24 | |
25 | p = dim(phiInit)[1] |
26 | m = dim(phiInit)[2] |
27 | |
28 | print("main loop: over all k and all lambda") |
29 | for (k in kmin:kmax) |
30 | { |
31 | print(k) |
32 | |
33 | print("Parameters initialization") |
34 | #smallEM initializes parameters by k-means and regression model in each component, |
35 | #doing this 20 times, and keeping the values maximizing the likelihood after 10 |
36 | #iterations of the EM algorithm. |
37 | init = initSmallEM(k, X, Y) |
38 | phiInit <<- init$phiInit |
39 | rhoInit <<- init$rhoInit |
40 | piInit <<- init$piInit |
41 | gamInit <<- init$gamInit |
42 | |
e54d1bb9 |
43 | gridLambda <<- gridLambda(phiInit, rhoInit, piInit, gamInit, X, Y, gamma, mini, maxi, eps) |
c7dab9ff |
44 | |
45 | print("Compute relevant parameters") |
46 | #select variables according to each regularization parameter |
47 | #from the grid: A1 corresponding to selected variables, and |
48 | #A2 corresponding to unselected variables. |
e54d1bb9 |
49 | params = selectiontotale(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,gridLambda,X,Y,1e-8,eps) |
c7dab9ff |
50 | A1 <<- params$A1 |
51 | A2 <<- params$A2 |
52 | Rho <<- params$Rho |
53 | Pi <<- params$Pi |
54 | |
55 | if (procedure == 'LassoMLE') { |
56 | print('run the procedure Lasso-MLE') |
57 | #compute parameter estimations, with the Maximum Likelihood |
58 | #Estimator, restricted on selected variables. |
59 | model = constructionModelesLassoMLE( |
60 | phiInit, rhoInit,piInit,tauInit,mini,maxi, |
61 | gamma,gridLambda,X,Y,thresh,eps,A1,A2) |
62 | ################################################ |
63 | ### Regarder la SUITE |
64 | r1 = runProcedure1() |
65 | Phi2 = Phi |
66 | Rho2 = Rho |
67 | Pi2 = Pi |
68 | |
69 | if (is.null(dim(Phi2))) |
70 | #test was: size(Phi2) == 0 |
71 | { |
72 | Phi[, , 1:k] <<- r1$phi |
73 | Rho[, , 1:k] <<- r1$rho |
74 | Pi[1:k,] <<- r1$pi |
75 | } else |
76 | { |
77 | Phi <<- |
78 | array(0., dim = c(p, m, kmax, dim(Phi2)[4] + dim(r1$phi)[4])) |
79 | Phi[, , 1:(dim(Phi2)[3]), 1:(dim(Phi2)[4])] <<- Phi2 |
80 | Phi[, , 1:k, dim(Phi2)[4] + 1] <<- r1$phi |
81 | Rho <<- |
82 | array(0., dim = c(m, m, kmax, dim(Rho2)[4] + dim(r1$rho)[4])) |
83 | Rho[, , 1:(dim(Rho2)[3]), 1:(dim(Rho2)[4])] <<- Rho2 |
84 | Rho[, , 1:k, dim(Rho2)[4] + 1] <<- r1$rho |
85 | Pi <<- array(0., dim = c(kmax, dim(Pi2)[2] + dim(r1$pi)[2])) |
86 | Pi[1:nrow(Pi2), 1:ncol(Pi2)] <<- Pi2 |
87 | Pi[1:k, ncol(Pi2) + 1] <<- r1$pi |
88 | } |
89 | } else { |
90 | print('run the procedure Lasso-Rank') |
91 | #compute parameter estimations, with the Low Rank |
92 | #Estimator, restricted on selected variables. |
93 | model = constructionModelesLassoRank(Pi, Rho, mini, maxi, X, Y, eps, |
94 | A1, rank.min, rank.max) |
95 | |
96 | ################################################ |
97 | ### Regarder la SUITE |
98 | phi = runProcedure2()$phi |
99 | Phi2 = Phi |
100 | if (dim(Phi2)[1] == 0) |
101 | { |
102 | Phi[, , 1:k,] <<- phi |
103 | } else |
104 | { |
105 | Phi <<- array(0, dim = c(p, m, kmax, dim(Phi2)[4] + dim(phi)[4])) |
106 | Phi[, , 1:(dim(Phi2)[3]), 1:(dim(Phi2)[4])] <<- Phi2 |
107 | Phi[, , 1:k,-(1:(dim(Phi2)[4]))] <<- phi |
108 | } |
109 | } |
110 | } |
111 | print('Model selection') |
112 | if (selecMod == 'SlopeHeuristic') { |
113 | |
114 | } else if (selecMod == 'BIC') { |
115 | |
116 | } else if (selecMod == 'AIC') { |
117 | |
118 | } |
119 | } |