Commit | Line | Data |
---|---|---|
56857861 BA |
1 | context("clustering") |
2 | ||
56857861 BA |
3 | test_that("computeSynchrones behave as expected", |
4 | { | |
8702eb86 BA |
5 | n = 300 |
6 | x = seq(0,9.5,0.1) | |
7 | L = length(x) #96 1/4h | |
8 | K = 3 | |
9 | s1 = cos(x) | |
10 | s2 = sin(x) | |
11 | s3 = c( s1[1:(L%/%2)] , s2[(L%/%2+1):L] ) | |
12 | #sum((s1-s2)^2) == 96 | |
13 | #sum((s1-s3)^2) == 58 | |
14 | #sum((s2-s3)^2) == 38 | |
15 | s = list(s1, s2, s3) | |
37c82bba | 16 | series = matrix(nrow=L, ncol=n) |
8702eb86 | 17 | for (i in seq_len(n)) |
37c82bba | 18 | series[,i] = s[[I(i,K)]] + rnorm(L,sd=0.01) |
8702eb86 | 19 | getRefSeries = function(indices) { |
492cd9e7 | 20 | indices = indices[indices <= n] |
37c82bba | 21 | if (length(indices)>0) series[,indices] else NULL |
8702eb86 | 22 | } |
37c82bba | 23 | synchrones = computeSynchrones(bigmemory::as.big.matrix(cbind(s1,s2,s3)), getRefSeries, |
0486fbad | 24 | n, 100, sync_mean=TRUE, verbose=TRUE, parll=FALSE) |
56857861 | 25 | |
37c82bba | 26 | expect_equal(dim(synchrones), c(L,K)) |
8702eb86 | 27 | for (i in 1:K) |
37c82bba | 28 | expect_equal(synchrones[,i], s[[i]], tolerance=0.01) |
56857861 BA |
29 | }) |
30 | ||
0486fbad BA |
31 | # Helper function to divide indices into balanced sets |
32 | test_that("Helper function to spread indices work properly", | |
8702eb86 | 33 | { |
0486fbad BA |
34 | indices <- 1:400 |
35 | ||
36 | # bigger nb_per_set than length(indices) | |
37 | expect_equal(epclust:::.spreadIndices(indices,500), list(indices)) | |
38 | ||
39 | # nb_per_set == length(indices) | |
40 | expect_equal(epclust:::.spreadIndices(indices,400), list(indices)) | |
41 | ||
42 | # length(indices) %% nb_per_set == 0 | |
43 | expect_equal(epclust:::.spreadIndices(indices,200), | |
44 | c( list(indices[1:200]), list(indices[201:400]) )) | |
45 | expect_equal(epclust:::.spreadIndices(indices,100), | |
46 | c( list(indices[1:100]), list(indices[101:200]), | |
47 | list(indices[201:300]), list(indices[301:400]) )) | |
48 | ||
49 | # length(indices) / nb_per_set == 1, length(indices) %% nb_per_set == 100 | |
50 | expect_equal(epclust:::.spreadIndices(indices,300), list(indices)) | |
51 | # length(indices) / nb_per_set == 2, length(indices) %% nb_per_set == 42 | |
52 | repartition <- epclust:::.spreadIndices(indices,179) | |
53 | expect_equal(length(repartition), 2) | |
54 | expect_equal(length(repartition[[1]]), 179 + 21) | |
55 | expect_equal(length(repartition[[1]]), 179 + 21) | |
56 | }) | |
8702eb86 | 57 | |
e161499b | 58 | test_that("clusteringTask1 behave as expected", |
56857861 | 59 | { |
8702eb86 BA |
60 | n = 900 |
61 | x = seq(0,9.5,0.1) | |
62 | L = length(x) #96 1/4h | |
63 | K1 = 60 | |
8702eb86 | 64 | s = lapply( seq_len(K1), function(i) x^(1+i/30)*cos(x+i) ) |
0fe757f7 | 65 | series = matrix(nrow=L, ncol=n) |
8702eb86 | 66 | for (i in seq_len(n)) |
37c82bba | 67 | series[,i] = s[[I(i,K1)]] + rnorm(L,sd=0.01) |
e161499b | 68 | getSeries = function(indices) { |
492cd9e7 | 69 | indices = indices[indices <= n] |
37c82bba | 70 | if (length(indices)>0) series[,indices] else NULL |
8702eb86 | 71 | } |
e161499b BA |
72 | wf = "haar" |
73 | ctype = "absolute" | |
37c82bba | 74 | getContribs = function(indices) curvesToContribs(series[,indices],wf,ctype) |
0fe757f7 BA |
75 | require("cluster", quietly=TRUE) |
76 | browser() | |
77 | algoClust1 = function(contribs,K) cluster::pam(contribs,K,diss=FALSE)$id.med | |
78 | indices1 = clusteringTask1(1:n, getContribs, K1, algoClust1, 75, verbose=TRUE, parll=FALSE) | |
e161499b | 79 | medoids_K1 = getSeries(indices1) |
56857861 | 80 | |
37c82bba | 81 | expect_equal(dim(medoids_K1), c(L,K1)) |
8702eb86 | 82 | # Not easy to evaluate result: at least we expect it to be better than random selection of |
e161499b BA |
83 | # medoids within initial series |
84 | distorGood = computeDistortion(series, medoids_K1) | |
8702eb86 | 85 | for (i in 1:3) |
37c82bba | 86 | expect_lte( distorGood, computeDistortion(series,series[,sample(1:n, K1)]) ) |
56857861 BA |
87 | }) |
88 | ||
e161499b | 89 | test_that("clusteringTask2 behave as expected", |
56857861 | 90 | { |
8702eb86 BA |
91 | n = 900 |
92 | x = seq(0,9.5,0.1) | |
93 | L = length(x) #96 1/4h | |
94 | K1 = 60 | |
95 | K2 = 3 | |
e161499b | 96 | #for (i in 1:60) {plot(x^(1+i/30)*cos(x+i),type="l",col=i,ylim=c(-50,50)); par(new=TRUE)} |
8702eb86 | 97 | s = lapply( seq_len(K1), function(i) x^(1+i/30)*cos(x+i) ) |
0fe757f7 | 98 | series = matrix(nrow=L, ncol=n) |
8702eb86 BA |
99 | for (i in seq_len(n)) |
100 | series[i,] = s[[I(i,K1)]] + rnorm(L,sd=0.01) | |
e161499b | 101 | getRefSeries = function(indices) { |
8702eb86 | 102 | indices = indices[indices <= n] |
37c82bba | 103 | if (length(indices)>0) series[,indices] else NULL |
8702eb86 | 104 | } |
e161499b | 105 | # Artificially simulate 60 medoids - perfect situation, all equal to one of the refs |
37c82bba | 106 | medoids_K1 = bigmemory::as.big.matrix( sapply( 1:K1, function(i) s[[I(i,K1)]] ) ) |
e161499b | 107 | medoids_K2 = clusteringTask2(medoids_K1, K2, getRefSeries, n, 75, verbose=TRUE, parll=FALSE) |
56857861 | 108 | |
37c82bba | 109 | expect_equal(dim(medoids_K2), c(L,K2)) |
8702eb86 BA |
110 | # Not easy to evaluate result: at least we expect it to be better than random selection of |
111 | # medoids within 1...K1 (among references) | |
112 | distorGood = computeDistortion(series, medoids_K2) | |
113 | for (i in 1:3) | |
37c82bba | 114 | expect_lte( distorGood, computeDistortion(series,medoids_K1[,sample(1:K1, K2)]) ) |
56857861 | 115 | }) |