Commit | Line | Data |
---|---|---|
40f12a2f BA |
1 | #' computeWerDists |
2 | #' | |
3fb6e823 BA |
3 | #' Compute the WER distances between the series at specified indices, which are |
4 | #' obtaind by \code{getSeries(indices)} | |
40f12a2f | 5 | #' |
3c5a4b08 | 6 | #' @param indices Range of series indices to cluster |
40f12a2f | 7 | #' @inheritParams claws |
3c5a4b08 | 8 | #' @inheritParams computeSynchrones |
40f12a2f | 9 | #' |
3c5a4b08 | 10 | #' @return A distances matrix of size K x K where K == length(indices) |
40f12a2f BA |
11 | #' |
12 | #' @export | |
282342ba | 13 | computeWerDists <- function(indices, getSeries, nb_series_per_chunk, smooth_lvl, nvoice, |
3fb6e823 | 14 | nbytes, endian, ncores_clust=3, verbose=FALSE, parll=TRUE) |
40f12a2f | 15 | { |
3c5a4b08 | 16 | n <- length(indices) |
282342ba BA |
17 | L <- length(getSeries(1)) #TODO: not very neat way to get L |
18 | noctave <- ceiling(log2(L)) #min power of 2 to cover serie range | |
3c5a4b08 BA |
19 | # Since a CWT contains noctave*nvoice complex series, we deduce the number of CWT to |
20 | # retrieve/put in one chunk. | |
282342ba | 21 | nb_cwt_per_chunk <- max(1, floor(nb_series_per_chunk / (nvoice*noctave*2))) |
40f12a2f | 22 | |
3c5a4b08 | 23 | # Initialize result as a square big.matrix of size 'number of medoids' |
40f12a2f BA |
24 | Xwer_dist <- bigmemory::big.matrix(nrow=n, ncol=n, type="double") |
25 | ||
282342ba | 26 | cwt_file <- tempfile(pattern="epclust_cwt.bin_") |
3c5a4b08 | 27 | # Compute the getSeries(indices) CWT, and store the results in the binary file |
282342ba | 28 | computeSaveCWT <- function(indices) |
40f12a2f BA |
29 | { |
30 | if (parll) | |
31 | { | |
3fb6e823 | 32 | # parallel workers start with an empty environment |
40f12a2f | 33 | require("epclust", quietly=TRUE) |
40f12a2f BA |
34 | } |
35 | ||
36 | # Obtain CWT as big vectors of real part + imaginary part (concatenate) | |
37 | ts_cwt <- sapply(indices, function(i) { | |
3c5a4b08 | 38 | ts <- scale(ts(getSeries(i)), center=TRUE, scale=FALSE) |
40f12a2f BA |
39 | ts_cwt <- Rwave::cwt(ts, noctave, nvoice, w0=2*pi, twoD=TRUE, plot=FALSE) |
40 | c( as.double(Re(ts_cwt)),as.double(Im(ts_cwt)) ) | |
41 | }) | |
42 | ||
43 | # Serialization | |
3c5a4b08 | 44 | binarize(ts_cwt, cwt_file, nb_cwt_per_chunk, ",", nbytes, endian) |
40f12a2f BA |
45 | } |
46 | ||
40f12a2f | 47 | # Function to retrieve a synchrone CWT from (binary) file |
282342ba | 48 | getCWT <- function(index, L) |
40f12a2f BA |
49 | { |
50 | flat_cwt <- getDataInFile(index, cwt_file, nbytes, endian) | |
282342ba BA |
51 | cwt_length <- length(flat_cwt) / 2 |
52 | re_part <- as.matrix(flat_cwt[1:cwt_length], nrow=L) | |
53 | im_part <- as.matrix(flat_cwt[(cwt_length+1):(2*cwt_length)], nrow=L) | |
40f12a2f BA |
54 | re_part + 1i * im_part |
55 | } | |
56 | ||
282342ba BA |
57 | # Compute distance between columns i and j for j>i |
58 | computeDistances <- function(i) | |
40f12a2f BA |
59 | { |
60 | if (parll) | |
61 | { | |
62 | # parallel workers start with an empty environment | |
40f12a2f | 63 | require("epclust", quietly=TRUE) |
40f12a2f BA |
64 | Xwer_dist <- bigmemory::attach.big.matrix(Xwer_dist_desc) |
65 | } | |
66 | ||
282342ba BA |
67 | if (verbose && !parll) |
68 | cat(paste(" Distances from ",i," to ",i+1,"...",n,"\n", sep="")) | |
40f12a2f | 69 | |
282342ba | 70 | # Get CWT of column i, and run computations for columns j>i |
3c5a4b08 | 71 | cwt_i <- getCWT(i, L) |
282342ba BA |
72 | WX <- filterMA(Mod(cwt_i * Conj(cwt_i)), smooth_lvl) |
73 | ||
74 | for (j in (i+1):n) | |
75 | { | |
76 | cwt_j <- getCWT(j, L) | |
40f12a2f | 77 | |
282342ba | 78 | # Compute the ratio of integrals formula 5.6 for WER^2 |
3fb6e823 | 79 | # in https://arxiv.org/abs/1101.4744v2 paragraph 5.3 |
282342ba BA |
80 | num <- filterMA(Mod(cwt_i * Conj(cwt_j)), smooth_lvl) |
81 | WY <- filterMA(Mod(cwt_j * Conj(cwt_j)), smooth_lvl) | |
82 | wer2 <- sum(colSums(num)^2) / sum(colSums(WX) * colSums(WY)) | |
40f12a2f | 83 | |
282342ba BA |
84 | Xwer_dist[i,j] <- sqrt(L * ncol(cwt_i) * (1 - wer2)) |
85 | Xwer_dist[j,i] <- Xwer_dist[i,j] | |
86 | } | |
40f12a2f BA |
87 | Xwer_dist[i,i] <- 0. |
88 | } | |
89 | ||
282342ba BA |
90 | if (parll) |
91 | { | |
92 | # outfile=="" to see stderr/stdout on terminal | |
3fb6e823 BA |
93 | cl <- |
94 | if (verbose) | |
95 | parallel::makeCluster(ncores_clust, outfile="") | |
96 | else | |
97 | parallel::makeCluster(ncores_clust) | |
282342ba BA |
98 | Xwer_dist_desc <- bigmemory::describe(Xwer_dist) |
99 | parallel::clusterExport(cl, varlist=c("parll","nb_cwt_per_chunk","n","L", | |
100 | "Xwer_dist_desc","noctave","nvoice","getCWT"), envir=environment()) | |
101 | } | |
102 | ||
103 | if (verbose) | |
104 | cat(paste("--- Precompute and serialize synchrones CWT\n", sep="")) | |
105 | ||
106 | # Split indices by packets of length at most nb_cwt_per_chunk | |
107 | indices_cwt <- .splitIndices(seq_len(n), nb_cwt_per_chunk) | |
108 | ignored <- | |
109 | if (parll) | |
110 | parallel::parLapply(cl, indices_cwt, computeSaveCWT) | |
111 | else | |
112 | lapply(indices_cwt, computeSaveCWT) | |
113 | ||
40f12a2f BA |
114 | if (verbose) |
115 | cat(paste("--- Compute WER distances\n", sep="")) | |
116 | ||
117 | ignored <- | |
118 | if (parll) | |
282342ba | 119 | parallel::parLapply(cl, seq_len(n-1), computeDistances) |
40f12a2f | 120 | else |
282342ba BA |
121 | lapply(seq_len(n-1), computeDistances) |
122 | Xwer_dist[n,n] <- 0. | |
40f12a2f BA |
123 | |
124 | if (parll) | |
125 | parallel::stopCluster(cl) | |
126 | ||
282342ba | 127 | unlink(cwt_file) #remove binary file |
40f12a2f | 128 | |
40f12a2f BA |
129 | Xwer_dist[,] #~small matrix K1 x K1 |
130 | } |