Commit | Line | Data |
---|---|---|
4bcfdbee BA |
1 | #' @name clustering |
2 | #' @rdname clustering | |
492cd9e7 | 3 | #' @aliases clusteringTask1 computeClusters1 computeClusters2 |
4bcfdbee | 4 | #' |
492cd9e7 | 5 | #' @title Two-stage clustering, withing one task (see \code{claws()}) |
4bcfdbee | 6 | #' |
492cd9e7 BA |
7 | #' @description \code{clusteringTask1()} runs one full stage-1 task, which consists in |
8 | #' iterated stage 1 clustering (on nb_curves / ntasks energy contributions, computed | |
9 | #' through discrete wavelets coefficients). \code{computeClusters1()} and | |
10 | #' \code{computeClusters2()} correspond to the atomic clustering procedures respectively | |
11 | #' for stage 1 and 2. The former applies the clustering algorithm (PAM) on a | |
12 | #' contributions matrix, while the latter clusters a chunk of series inside one task | |
13 | #' (~max nb_series_per_chunk) | |
4bcfdbee BA |
14 | #' |
15 | #' @param indices Range of series indices to cluster in parallel (initial data) | |
16 | #' @param getContribs Function to retrieve contributions from initial series indices: | |
17 | #' \code{getContribs(indices)} outpus a contributions matrix | |
18 | #' @param contribs matrix of contributions (e.g. output of \code{curvesToContribs()}) | |
19 | #' @inheritParams computeSynchrones | |
20 | #' @inheritParams claws | |
21 | #' | |
492cd9e7 | 22 | #' @return For \code{clusteringTask1()} and \code{computeClusters1()}, the indices of the |
4bcfdbee | 23 | #' computed (K1) medoids. Indices are irrelevant for stage 2 clustering, thus |
24ed5d83 | 24 | #' \code{computeClusters2()} outputs a big.matrix of medoids |
4bcfdbee BA |
25 | #' (of size limited by nb_series_per_chunk) |
26 | NULL | |
27 | ||
28 | #' @rdname clustering | |
29 | #' @export | |
492cd9e7 BA |
30 | clusteringTask1 = function( |
31 | indices, getContribs, K1, nb_series_per_chunk, ncores_clust=1, verbose=FALSE, parll=TRUE) | |
5c652979 | 32 | { |
492cd9e7 BA |
33 | if (verbose) |
34 | cat(paste("*** Clustering task on ",length(indices)," lines\n", sep="")) | |
4bcfdbee | 35 | |
492cd9e7 BA |
36 | wrapComputeClusters1 = function(inds) { |
37 | if (parll) | |
38 | require("epclust", quietly=TRUE) | |
39 | if (verbose) | |
40 | cat(paste(" computeClusters1() on ",length(inds)," lines\n", sep="")) | |
41 | inds[ computeClusters1(getContribs(inds), K1) ] | |
42 | } | |
4bcfdbee | 43 | |
492cd9e7 | 44 | if (parll) |
7b13d0c2 | 45 | { |
492cd9e7 BA |
46 | cl = parallel::makeCluster(ncores_clust) |
47 | parallel::clusterExport(cl, varlist=c("getContribs","K1","verbose"), envir=environment()) | |
7b13d0c2 | 48 | } |
492cd9e7 BA |
49 | while (length(indices) > K1) |
50 | { | |
51 | indices_workers = .spreadIndices(indices, nb_series_per_chunk) | |
52 | if (parll) | |
53 | indices = unlist( parallel::parLapply(cl, indices_workers, wrapComputeClusters1) ) | |
54 | else | |
55 | indices = unlist( lapply(indices_workers, wrapComputeClusters1) ) | |
56 | } | |
57 | if (parll) | |
58 | parallel::stopCluster(cl) | |
59 | ||
56857861 | 60 | indices #medoids |
5c652979 BA |
61 | } |
62 | ||
4bcfdbee BA |
63 | #' @rdname clustering |
64 | #' @export | |
65 | computeClusters1 = function(contribs, K1) | |
66 | cluster::pam(contribs, K1, diss=FALSE)$id.med | |
0e2dce80 | 67 | |
4bcfdbee BA |
68 | #' @rdname clustering |
69 | #' @export | |
492cd9e7 BA |
70 | computeClusters2 = function(medoids, K2, |
71 | getRefSeries, nb_ref_curves, nb_series_per_chunk, ncores_clust=1,verbose=FALSE,parll=TRUE) | |
5c652979 | 72 | { |
492cd9e7 BA |
73 | synchrones = computeSynchrones(medoids, |
74 | getRefSeries, nb_ref_curves, nb_series_per_chunk, ncores_clust, verbose, parll) | |
75 | distances = computeWerDists(synchrones, ncores_clust, verbose, parll) | |
24ed5d83 | 76 | #TODO: if PAM cannot take big.matrix in input, cast it before... (more than OK in RAM) |
492cd9e7 | 77 | medoids[ cluster::pam(distances, K2, diss=TRUE)$medoids , ] |
5c652979 BA |
78 | } |
79 | ||
4bcfdbee BA |
80 | #' computeSynchrones |
81 | #' | |
82 | #' Compute the synchrones curves (sum of clusters elements) from a matrix of medoids, | |
83 | #' using L2 distances. | |
84 | #' | |
24ed5d83 | 85 | #' @param medoids big.matrix of medoids (curves of same length as initial series) |
4bcfdbee BA |
86 | #' @param getRefSeries Function to retrieve initial series (e.g. in stage 2 after series |
87 | #' have been replaced by stage-1 medoids) | |
492cd9e7 | 88 | #' @param nb_ref_curves How many reference series? (This number is known at this stage) |
4bcfdbee BA |
89 | #' @inheritParams claws |
90 | #' | |
24ed5d83 BA |
91 | #' @return A big.matrix of size K1 x L where L = data_length |
92 | #' | |
4bcfdbee | 93 | #' @export |
492cd9e7 BA |
94 | computeSynchrones = function(medoids, getRefSeries, |
95 | nb_ref_curves, nb_series_per_chunk, ncores_clust=1,verbose=FALSE,parll=TRUE) | |
e205f218 | 96 | { |
24ed5d83 BA |
97 | |
98 | ||
99 | ||
100 | #TODO: si parll, getMedoids + serialization, pass only getMedoids to nodes | |
101 | # --> BOF... chaque node chargera tous les medoids (efficacité) :/ ==> faut que ça tienne en RAM | |
102 | #au pire :: C-ifier et charger medoids 1 by 1... | |
103 | ||
104 | #MIEUX :: medoids DOIT etre une big.matrix partagée ! | |
105 | ||
492cd9e7 | 106 | computeSynchronesChunk = function(indices) |
3eef8d3d | 107 | { |
c45fd663 BA |
108 | if (verbose) |
109 | cat(paste("--- Compute synchrones for ",length(indices)," lines\n", sep="")) | |
492cd9e7 | 110 | ref_series = getRefSeries(indices) |
3eef8d3d | 111 | #get medoids indices for this chunk of series |
56857861 BA |
112 | for (i in seq_len(nrow(ref_series))) |
113 | { | |
8702eb86 | 114 | j = which.min( rowSums( sweep(medoids, 2, ref_series[i,], '-')^2 ) ) |
492cd9e7 BA |
115 | if (parll) |
116 | synchronicity::lock(m) | |
8702eb86 | 117 | synchrones[j,] = synchrones[j,] + ref_series[i,] |
492cd9e7 BA |
118 | counts[j,1] = counts[j,1] + 1 |
119 | if (parll) | |
120 | synchronicity::unlock(m) | |
121 | } | |
122 | } | |
123 | ||
124 | K = nrow(medoids) | |
125 | # Use bigmemory (shared==TRUE by default) + synchronicity to fill synchrones in // | |
24ed5d83 | 126 | # TODO: if size > RAM (not our case), use file-backed big.matrix |
492cd9e7 BA |
127 | synchrones = bigmemory::big.matrix(nrow=K,ncol=ncol(medoids),type="double",init=0.) |
128 | counts = bigmemory::big.matrix(nrow=K,ncol=1,type="double",init=0) | |
24ed5d83 | 129 | # synchronicity is only for Linux & MacOS; on Windows: run sequentially |
492cd9e7 BA |
130 | parll = (requireNamespace("synchronicity",quietly=TRUE) |
131 | && parll && Sys.info()['sysname'] != "Windows") | |
132 | if (parll) | |
133 | m <- synchronicity::boost.mutex() | |
134 | ||
24ed5d83 BA |
135 | if (parll) |
136 | { | |
137 | cl = parallel::makeCluster(ncores_clust) | |
138 | parallel::clusterExport(cl, | |
139 | varlist=c("synchrones","counts","verbose","medoids","getRefSeries"), | |
140 | envir=environment()) | |
141 | } | |
142 | ||
492cd9e7 | 143 | indices_workers = .spreadIndices(seq_len(nb_ref_curves), nb_series_per_chunk) |
c45fd663 | 144 | ignored <- |
492cd9e7 | 145 | if (parll) |
24ed5d83 | 146 | parallel::parLapply(indices_workers, computeSynchronesChunk) |
492cd9e7 | 147 | else |
c45fd663 | 148 | lapply(indices_workers, computeSynchronesChunk) |
492cd9e7 | 149 | |
24ed5d83 BA |
150 | if (parll) |
151 | parallel::stopCluster(cl) | |
152 | ||
153 | #TODO: can we avoid this loop? ( synchrones = sweep(synchrones, 1, counts, '/') ) | |
492cd9e7 | 154 | for (i in seq_len(K)) |
24ed5d83 | 155 | synchrones[i,] = synchrones[i,] / counts[i,1] |
3eef8d3d | 156 | #NOTE: odds for some clusters to be empty? (when series already come from stage 2) |
8702eb86 | 157 | # ...maybe; but let's hope resulting K1' be still quite bigger than K2 |
24ed5d83 BA |
158 | noNA_rows = sapply(seq_len(K), function(i) all(!is.nan(synchrones[i,]))) |
159 | if (all(noNA_rows)) | |
160 | return (synchrones) | |
161 | # Else: some clusters are empty, need to slice synchrones | |
162 | synchrones[noNA_rows,] | |
e205f218 | 163 | } |
1c6f223e | 164 | |
4bcfdbee BA |
165 | #' computeWerDists |
166 | #' | |
167 | #' Compute the WER distances between the synchrones curves (in rows), which are | |
168 | #' returned (e.g.) by \code{computeSynchrones()} | |
169 | #' | |
24ed5d83 BA |
170 | #' @param synchrones A big.matrix of synchrones, in rows. The series have same length |
171 | #' as the series in the initial dataset | |
492cd9e7 | 172 | #' @inheritParams claws |
4bcfdbee | 173 | #' |
24ed5d83 BA |
174 | #' @return A big.matrix of size K1 x K1 |
175 | #' | |
4bcfdbee | 176 | #' @export |
492cd9e7 | 177 | computeWerDists = function(synchrones, ncores_clust=1,verbose=FALSE,parll=TRUE) |
d03c0621 | 178 | { |
24ed5d83 BA |
179 | |
180 | ||
181 | ||
182 | #TODO: re-organize to call computeWerDist(x,y) [C] (in //?) from two indices + big.matrix | |
183 | ||
184 | ||
4bcfdbee BA |
185 | n <- nrow(synchrones) |
186 | delta <- ncol(synchrones) | |
db6fc17d | 187 | #TODO: automatic tune of all these parameters ? (for other users) |
d03c0621 | 188 | nvoice <- 4 |
4bcfdbee | 189 | # noctave = 2^13 = 8192 half hours ~ 180 days ; ~log2(ncol(synchrones)) |
d7d55bc1 BA |
190 | noctave = 13 |
191 | # 4 here represent 2^5 = 32 half-hours ~ 1 day | |
db6fc17d | 192 | #NOTE: default scalevector == 2^(0:(noctave * nvoice) / nvoice) * s0 (?) |
24ed5d83 | 193 | scalevector <- 2^(4:(noctave * nvoice) / nvoice + 1) |
db6fc17d BA |
194 | #condition: ( log2(s0*w0/(2*pi)) - 1 ) * nvoice + 1.5 >= 1 |
195 | s0=2 | |
196 | w0=2*pi | |
197 | scaled=FALSE | |
198 | s0log = as.integer( (log2( s0*w0/(2*pi) ) - 1) * nvoice + 1.5 ) | |
199 | totnoct = noctave + as.integer(s0log/nvoice) + 1 | |
200 | ||
492cd9e7 BA |
201 | computeCWT = function(i) |
202 | { | |
203 | if (verbose) | |
204 | cat(paste("+++ Compute Rwave::cwt() on serie ",i,"\n", sep="")) | |
4bcfdbee | 205 | ts <- scale(ts(synchrones[i,]), center=TRUE, scale=scaled) |
24ed5d83 | 206 | totts.cwt = Rwave::cwt(ts, totnoct, nvoice, w0, plot=FALSE) |
db6fc17d BA |
207 | ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)] |
208 | #Normalization | |
209 | sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0) | |
af3ea947 | 210 | sqres <- sweep(ts.cwt,2,sqs,'*') |
db6fc17d | 211 | sqres / max(Mod(sqres)) |
492cd9e7 | 212 | } |
3ccd1e39 | 213 | |
492cd9e7 BA |
214 | if (parll) |
215 | { | |
216 | cl = parallel::makeCluster(ncores_clust) | |
af3ea947 BA |
217 | parallel::clusterExport(cl, |
218 | varlist=c("synchrones","totnoct","nvoice","w0","s0log","noctave","s0","verbose"), | |
219 | envir=environment()) | |
492cd9e7 BA |
220 | } |
221 | ||
24ed5d83 BA |
222 | # list of CWT from synchrones |
223 | # TODO: fit in RAM, OK? If not, 2 options: serialize, compute individual distances | |
492cd9e7 BA |
224 | Xcwt4 <- |
225 | if (parll) | |
226 | parallel::parLapply(cl, seq_len(n), computeCWT) | |
227 | else | |
228 | lapply(seq_len(n), computeCWT) | |
229 | ||
230 | if (parll) | |
231 | parallel::stopCluster(cl) | |
232 | ||
233 | Xwer_dist <- bigmemory::big.matrix(nrow=n, ncol=n, type="double") | |
db6fc17d | 234 | fcoefs = rep(1/3, 3) #moving average on 3 values (TODO: very slow! correct?!) |
492cd9e7 BA |
235 | if (verbose) |
236 | cat("*** Compute WER distances from CWT\n") | |
237 | ||
24ed5d83 BA |
238 | #TODO: computeDistances(i,j), et répartir les n(n-1)/2 couples d'indices |
239 | #là c'est trop déséquilibré | |
240 | ||
492cd9e7 | 241 | computeDistancesLineI = function(i) |
1c6f223e | 242 | { |
492cd9e7 BA |
243 | if (verbose) |
244 | cat(paste(" Line ",i,"\n", sep="")) | |
db6fc17d | 245 | for (j in (i+1):n) |
d03c0621 | 246 | { |
492cd9e7 | 247 | #TODO: 'circular=TRUE' is wrong, should just take values on the sides; to rewrite in C |
db6fc17d BA |
248 | num <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE) |
249 | WX <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[i]])), fcoefs, circular=TRUE) | |
250 | WY <- filter(Mod(Xcwt4[[j]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE) | |
24ed5d83 | 251 | wer2 <- sum(colSums(num)^2) / sum( sum(colSums(WX) * colSums(WY)) ) |
492cd9e7 BA |
252 | if (parll) |
253 | synchronicity::lock(m) | |
db6fc17d BA |
254 | Xwer_dist[i,j] <- sqrt(delta * ncol(Xcwt4[[1]]) * (1 - wer2)) |
255 | Xwer_dist[j,i] <- Xwer_dist[i,j] | |
492cd9e7 BA |
256 | if (parll) |
257 | synchronicity::unlock(m) | |
258 | } | |
259 | Xwer_dist[i,i] = 0. | |
260 | } | |
261 | ||
262 | parll = (requireNamespace("synchronicity",quietly=TRUE) | |
263 | && parll && Sys.info()['sysname'] != "Windows") | |
264 | if (parll) | |
265 | m <- synchronicity::boost.mutex() | |
266 | ||
c45fd663 | 267 | ignored <- |
492cd9e7 | 268 | if (parll) |
c45fd663 BA |
269 | { |
270 | parallel::mclapply(seq_len(n-1), computeDistancesLineI, | |
271 | mc.cores=ncores_clust, mc.allow.recursive=FALSE) | |
272 | } | |
492cd9e7 | 273 | else |
c45fd663 | 274 | lapply(seq_len(n-1), computeDistancesLineI) |
492cd9e7 | 275 | Xwer_dist[n,n] = 0. |
24ed5d83 | 276 | Xwer_dist |
492cd9e7 BA |
277 | } |
278 | ||
279 | # Helper function to divide indices into balanced sets | |
280 | .spreadIndices = function(indices, nb_per_chunk) | |
281 | { | |
282 | L = length(indices) | |
283 | nb_workers = floor( L / nb_per_chunk ) | |
284 | if (nb_workers == 0) | |
285 | { | |
286 | # L < nb_series_per_chunk, simple case | |
287 | indices_workers = list(indices) | |
288 | } | |
289 | else | |
290 | { | |
291 | indices_workers = lapply( seq_len(nb_workers), function(i) | |
292 | indices[(nb_per_chunk*(i-1)+1):(nb_per_chunk*i)] ) | |
293 | # Spread the remaining load among the workers | |
294 | rem = L %% nb_per_chunk | |
295 | while (rem > 0) | |
296 | { | |
297 | index = rem%%nb_workers + 1 | |
298 | indices_workers[[index]] = c(indices_workers[[index]], indices[L-rem+1]) | |
299 | rem = rem - 1 | |
d03c0621 | 300 | } |
1c6f223e | 301 | } |
492cd9e7 | 302 | indices_workers |
1c6f223e | 303 | } |