3 #' Description de EMGLLF
5 #' @param phiInit an initialization for phi
6 #' @param rhoInit an initialization for rho
7 #' @param piInit an initialization for pi
8 #' @param gamInit initialization for the a posteriori probabilities
9 #' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10
10 #' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100
11 #' @param gamma integer for the power in the penaly, by default = 1
12 #' @param lambda regularization parameter in the Lasso estimation
13 #' @param X matrix of covariates (of size n*p)
14 #' @param Y matrix of responses (of size n*m)
15 #' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4
17 #' @return A list ... phi,rho,pi,LLF,S,affec:
18 #' phi : parametre de moyenne renormalisé, calculé par l'EM
19 #' rho : parametre de variance renormalisé, calculé par l'EM
20 #' pi : parametre des proportions renormalisé, calculé par l'EM
21 #' LLF : log vraisemblance associée à cet échantillon, pour les valeurs estimées des paramètres
22 #' S : ... affec : ...
25 EMGLLF <- function(phiInit, rhoInit, piInit, gamInit,
26 mini, maxi, gamma, lambda, X, Y, eps, fast=TRUE)
31 return (.EMGLLF_R(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,lambda,X,Y,eps))
35 n = nrow(X) #nombre d'echantillons
36 p = ncol(X) #nombre de covariables
37 m = ncol(Y) #taille de Y (multivarié)
38 k = length(piInit) #nombre de composantes dans le mélange
40 phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, X, Y, eps,
41 phi=double(p*m*k), rho=double(m*m*k), pi=double(k), LLF=double(maxi),
42 S=double(p*m*k), affec=integer(n),
47 # R version - slow but easy to read
48 .EMGLLF_R = function(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,lambda,X2,Y,eps)
52 if (length(dim(phiInit)) == 2){
61 X = matrix(nrow = n, ncol = p)
64 phi = array(NA, dim = c(p,m,k))
69 S = array(0, dim=c(p,m,k))
73 Gram2 = array(0, dim=c(p,p,k))
74 ps2 = array(0, dim=c(p,m,k))
75 X2 = array(0, dim=c(n,p,k))
76 Y2 = array(0, dim=c(n,m,k))
81 # Remember last pi,rho,phi values for exit condition in the end of loop
86 # Computations associated to X and Y
90 Y2[,mm,r] = sqrt(gam[,r]) * Y[,mm]
92 X2[i,,r] = sqrt(gam[i,r]) * X[i,]
94 ps2[,mm,r] = crossprod(X2[,,r],Y2[,mm,r])
98 Gram2[j,s,r] = crossprod(X2[,j,r], X2[,s,r])
107 b = sapply( 1:k, function(r) sum(abs(phi[,,r])) )
109 a = sum(gam %*% log(pi))
111 # While the proportions are nonpositive
113 pi2AllPositive = FALSE
114 while (!pi2AllPositive)
116 pi2 = pi + 0.1^kk * ((1/n)*gam2 - pi)
117 pi2AllPositive = all(pi2 >= 0)
121 # t(m) is the largest value in the grid O.1^k such that it is nonincreasing
122 while( kk < 1000 && -a/n + lambda * sum(pi^gamma * b) <
123 -sum(gam2 * log(pi2))/n + lambda * sum(pi2^gamma * b) )
125 pi2 = pi + 0.1^kk * (1/n*gam2 - pi)
129 pi = (pi + t*(pi2-pi)) / sum(pi + t*(pi2-pi))
138 ps = ps + Y2[i,mm,r] * sum(X2[i,,r] * phi[,mm,r])
139 nY2 = sum(Y2[,mm,r]^2)
140 rho[mm,mm,r] = (ps+sqrt(ps^2+4*nY2*gam2[r])) / (2*nY2)
150 S[j,mm,r] = -rho[mm,mm,r]*ps2[j,mm,r] + sum(phi[-j,mm,r] * Gram2[j,-j,r])
151 if (abs(S[j,mm,r]) <= n*lambda*(pi[r]^gamma))
153 else if(S[j,mm,r] > n*lambda*(pi[r]^gamma))
154 phi[j,mm,r] = (n*lambda*(pi[r]^gamma)-S[j,mm,r]) / Gram2[j,j,r]
156 phi[j,mm,r] = -(n*lambda*(pi[r]^gamma)+S[j,mm,r]) / Gram2[j,j,r]
165 # Precompute det(rho[,,r]) for r in 1...k
166 detRho = sapply(1:k, function(r) det(rho[,,r]))
167 gam1 = matrix(0, nrow = n, ncol = k)
173 gam1[i,r] = pi[r]*exp(-0.5*sum((Y[i,]%*%rho[,,r]-X[i,]%*%phi[,,r])^2))*detRho[r]
176 gam = gam1 / rowSums(gam1)
177 sumLogLLH = sum(log(rowSums(gam)) - log((2*base::pi)^(m/2)))
178 sumPen = sum(pi^gamma * b)
180 llh = -sumLogLLH/n + lambda*sumPen
181 dist = ifelse( ite == 1, llh, (llh-last_llh) / (1+abs(llh)) )
182 Dist1 = max( (abs(phi-Phi)) / (1+abs(phi)) )
183 Dist2 = max( (abs(rho-Rho)) / (1+abs(rho)) )
184 Dist3 = max( (abs(pi-Pi)) / (1+abs(Pi)) )
185 dist2 = max(Dist1,Dist2,Dist3)
187 if (ite >= mini && (dist >= eps || dist2 >= sqrt(eps)))
191 list( "phi"=phi, "rho"=rho, "pi"=pi, "llh"=llh, "S"=S)