Rename main function into runValse, remove testthat folder since nobody's gonna write...
[valse.git] / pkg / R / selectVariables.R
... / ...
CommitLineData
1#' selectVariables
2#'
3#' It is a function which constructs, for a given lambda, the sets for each cluster of relevant variables.
4#'
5#' @param phiInit an initial estimator for phi (size: p*m*k)
6#' @param rhoInit an initial estimator for rho (size: m*m*k)
7#' @param piInit an initial estimator for pi (size : k)
8#' @param gamInit an initial estimator for gamma
9#' @param mini minimum number of iterations in EM algorithm
10#' @param maxi maximum number of iterations in EM algorithm
11#' @param gamma power in the penalty
12#' @param glambda grid of regularization parameters
13#' @param X matrix of regressors
14#' @param Y matrix of responses
15#' @param thresh real, threshold to say a variable is relevant, by default = 1e-8
16#' @param eps threshold to say that EM algorithm has converged
17#' @param ncores Number or cores for parallel execution (1 to disable)
18#'
19#' @return a list of outputs, for each lambda in grid: selected,Rho,Pi
20#'
21#' @export
22selectVariables <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma,
23 glambda, X, Y, thresh = 1e-08, eps, ncores = 3, fast)
24{
25 if (ncores > 1) {
26 cl <- parallel::makeCluster(ncores, outfile = "")
27 parallel::clusterExport(cl = cl, varlist = c("phiInit", "rhoInit", "gamInit",
28 "mini", "maxi", "glambda", "X", "Y", "thresh", "eps"), envir = environment())
29 }
30
31 # Computation for a fixed lambda
32 computeCoefs <- function(lambda)
33 {
34 params <- EMGLLF(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda,
35 X, Y, eps, fast)
36
37 p <- ncol(X)
38 m <- ncol(Y)
39
40 # selectedVariables: list where element j contains vector of selected variables
41 # in [1,m]
42 selectedVariables <- lapply(1:p, function(j) {
43 # from boolean matrix mxk of selected variables obtain the corresponding boolean
44 # m-vector, and finally return the corresponding indices
45 if (m>1) {
46 seq_len(m)[apply(abs(params$phi[j, , ]) > thresh, 1, any)]
47 } else {
48 if (any(params$phi[j, , ] > thresh))
49 1
50 else
51 numeric(0)
52 }
53 })
54
55 list(selected = selectedVariables, Rho = params$rho, Pi = params$pi)
56 }
57
58 # For each lambda in the grid, we compute the coefficients
59 out <-
60 if (ncores > 1) {
61 parLapply(cl, glambda, computeCoefs)
62 } else {
63 lapply(glambda, computeCoefs)
64 }
65 if (ncores > 1)
66 parallel::stopCluster(cl)
67
68 print(out)
69 # Suppress models which are computed twice
70 # sha1_array <- lapply(out, digest::sha1) out[ duplicated(sha1_array) ]
71 selec <- lapply(out, function(model) model$selected)
72 ind_dup <- duplicated(selec)
73 ind_uniq <- which(!ind_dup)
74 out2 <- list()
75 for (l in 1:length(ind_uniq))
76 out2[[l]] <- out[[ind_uniq[l]]]
77 out2
78}