| 1 | #' Plot |
| 2 | #' |
| 3 | #' It is a function which plots relevant parameters |
| 4 | #' |
| 5 | #' @param X matrix of covariates (of size n*p) |
| 6 | #' @param Y matrix of responses (of size n*m) |
| 7 | #' @param model the model constructed by valse procedure |
| 8 | #' @param comp TRUE to enable pairwise clusters comparison |
| 9 | #' @param k1 index of the first cluster to be compared |
| 10 | #' @param k2 index of the second cluster to be compared |
| 11 | #' |
| 12 | #' @importFrom ggplot2 ggplot aes ggtitle geom_tile geom_line geom_point scale_fill_gradient2 geom_boxplot theme |
| 13 | #' @importFrom cowplot background_grid |
| 14 | #' @importFrom reshape2 melt |
| 15 | #' |
| 16 | #' @export |
| 17 | plot_valse <- function(X, Y, model, comp = FALSE, k1 = NA, k2 = NA) |
| 18 | { |
| 19 | n <- nrow(X) |
| 20 | K <- length(model$pi) |
| 21 | ## regression matrices |
| 22 | gReg <- list() |
| 23 | for (r in 1:K) |
| 24 | { |
| 25 | Melt <- melt(t((model$phi[, , r]))) |
| 26 | gReg[[r]] <- ggplot(data = Melt, aes(x = Var1, y = Var2, fill = value)) + |
| 27 | geom_tile() + scale_fill_gradient2(low = "blue", high = "red", mid = "white", |
| 28 | midpoint = 0, space = "Lab") + ggtitle(paste("Regression matrices in cluster", r)) |
| 29 | } |
| 30 | print(gReg) |
| 31 | |
| 32 | ## Differences between two clusters |
| 33 | if (comp) |
| 34 | { |
| 35 | if (is.na(k1) || is.na(k2)) |
| 36 | print("k1 and k2 must be integers, representing the clusters you want to compare") |
| 37 | Melt <- melt(t(model$phi[, , k1] - model$phi[, , k2])) |
| 38 | gDiff <- ggplot(data = Melt, aes(x = Var1, y = Var2, fill = value)) + |
| 39 | geom_tile() + scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, |
| 40 | space = "Lab") + ggtitle(paste("Difference between regression matrices in cluster", |
| 41 | k1, "and", k2)) |
| 42 | print(gDiff) |
| 43 | } |
| 44 | |
| 45 | ### Covariance matrices |
| 46 | matCov <- matrix(NA, nrow = dim(model$rho[, , 1])[1], ncol = K) |
| 47 | for (r in 1:K) |
| 48 | matCov[, r] <- diag(model$rho[, , r]) |
| 49 | MeltCov <- melt(matCov) |
| 50 | gCov <- ggplot(data = MeltCov, aes(x = Var1, y = Var2, fill = value)) + geom_tile() + |
| 51 | scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, |
| 52 | space = "Lab") + ggtitle("Covariance matrices (diag., one row per cluster)") |
| 53 | print(gCov) |
| 54 | |
| 55 | ### Proportions |
| 56 | gam2 <- matrix(NA, ncol = K, nrow = n) |
| 57 | for (i in 1:n) |
| 58 | gam2[i, ] <- c(model$proba[i, model$affec[i]], model$affec[i]) |
| 59 | |
| 60 | bp <- ggplot(data.frame(gam2), aes(x = X2, y = X1, color = X2, group = X2)) + geom_boxplot() + |
| 61 | theme(legend.position = "none") + background_grid(major = "xy", minor = "none") + |
| 62 | ggtitle("Assignment boxplot per cluster") |
| 63 | print(bp) |
| 64 | } |