| 1 | import { ChessRules } from "@/base_rules"; |
| 2 | |
| 3 | export class XiangqiRules extends ChessRules { |
| 4 | |
| 5 | static get Options() { |
| 6 | return null; |
| 7 | } |
| 8 | |
| 9 | // NOTE (TODO?) scanKings() could be more efficient (in Jangqi too) |
| 10 | |
| 11 | static get Monochrome() { |
| 12 | return true; |
| 13 | } |
| 14 | |
| 15 | static get Notoodark() { |
| 16 | return true; |
| 17 | } |
| 18 | |
| 19 | static get Lines() { |
| 20 | let lines = []; |
| 21 | // Draw all inter-squares lines, shifted: |
| 22 | for (let i = 0; i < V.size.x; i++) |
| 23 | lines.push([[i+0.5, 0.5], [i+0.5, V.size.y-0.5]]); |
| 24 | for (let j = 0; j < V.size.y; j++) |
| 25 | lines.push([[0.5, j+0.5], [V.size.x-0.5, j+0.5]]); |
| 26 | // Add palaces: |
| 27 | lines.push([[0.5, 3.5], [2.5, 5.5]]); |
| 28 | lines.push([[0.5, 5.5], [2.5, 3.5]]); |
| 29 | lines.push([[9.5, 3.5], [7.5, 5.5]]); |
| 30 | lines.push([[9.5, 5.5], [7.5, 3.5]]); |
| 31 | // Show river: |
| 32 | lines.push([[4.5, 0.5], [5.5, 8.5]]); |
| 33 | lines.push([[5.5, 0.5], [4.5, 8.5]]); |
| 34 | return lines; |
| 35 | } |
| 36 | |
| 37 | static get HasFlags() { |
| 38 | return false; |
| 39 | } |
| 40 | |
| 41 | static get HasEnpassant() { |
| 42 | return false; |
| 43 | } |
| 44 | |
| 45 | static get LoseOnRepetition() { |
| 46 | return true; |
| 47 | } |
| 48 | |
| 49 | static get ELEPHANT() { |
| 50 | return "e"; |
| 51 | } |
| 52 | |
| 53 | static get CANNON() { |
| 54 | return "c"; |
| 55 | } |
| 56 | |
| 57 | static get ADVISOR() { |
| 58 | return "a"; |
| 59 | } |
| 60 | |
| 61 | static get PIECES() { |
| 62 | return [V.PAWN, V.ROOK, V.KNIGHT, V.ELEPHANT, V.ADVISOR, V.KING, V.CANNON]; |
| 63 | } |
| 64 | |
| 65 | getPpath(b) { |
| 66 | return "Xiangqi/" + b; |
| 67 | } |
| 68 | |
| 69 | static get size() { |
| 70 | return { x: 10, y: 9}; |
| 71 | } |
| 72 | |
| 73 | getPotentialMovesFrom(sq) { |
| 74 | let moves = []; |
| 75 | const piece = this.getPiece(sq[0], sq[1]); |
| 76 | switch (piece) { |
| 77 | case V.PAWN: |
| 78 | moves = this.getPotentialPawnMoves(sq); |
| 79 | break; |
| 80 | case V.ROOK: |
| 81 | moves = super.getPotentialRookMoves(sq); |
| 82 | break; |
| 83 | case V.KNIGHT: |
| 84 | moves = this.getPotentialKnightMoves(sq); |
| 85 | break; |
| 86 | case V.ELEPHANT: |
| 87 | moves = this.getPotentialElephantMoves(sq); |
| 88 | break; |
| 89 | case V.ADVISOR: |
| 90 | moves = this.getPotentialAdvisorMoves(sq); |
| 91 | break; |
| 92 | case V.KING: |
| 93 | moves = this.getPotentialKingMoves(sq); |
| 94 | break; |
| 95 | case V.CANNON: |
| 96 | moves = this.getPotentialCannonMoves(sq); |
| 97 | break; |
| 98 | } |
| 99 | if (piece != V.KING && this.kingPos['w'][1] != this.kingPos['b'][1]) |
| 100 | return moves; |
| 101 | if (this.kingPos['w'][1] == this.kingPos['b'][1]) { |
| 102 | const colKing = this.kingPos['w'][1]; |
| 103 | let intercept = 0; //count intercepting pieces |
| 104 | for (let i = this.kingPos['b'][0] + 1; i < this.kingPos['w'][0]; i++) { |
| 105 | if (this.board[i][colKing] != V.EMPTY) intercept++; |
| 106 | } |
| 107 | if (intercept >= 2) return moves; |
| 108 | // intercept == 1 (0 is impossible): |
| 109 | // Any move not removing intercept is OK |
| 110 | return moves.filter(m => { |
| 111 | return ( |
| 112 | // From another column? |
| 113 | m.start.y != colKing || |
| 114 | // From behind a king? (including kings themselves!) |
| 115 | m.start.x <= this.kingPos['b'][0] || |
| 116 | m.start.x >= this.kingPos['w'][0] || |
| 117 | // Intercept piece moving: must remain in-between |
| 118 | ( |
| 119 | m.end.y == colKing && |
| 120 | m.end.x > this.kingPos['b'][0] && |
| 121 | m.end.x < this.kingPos['w'][0] |
| 122 | ) |
| 123 | ); |
| 124 | }); |
| 125 | } |
| 126 | // piece == king: check only if move.end.y == enemy king column |
| 127 | const color = this.getColor(sq[0], sq[1]); |
| 128 | const oppCol = V.GetOppCol(color); |
| 129 | // colCheck == -1 if unchecked, 1 if checked and occupied, |
| 130 | // 0 if checked and clear |
| 131 | let colCheck = -1; |
| 132 | return moves.filter(m => { |
| 133 | if (m.end.y != this.kingPos[oppCol][1]) return true; |
| 134 | if (colCheck < 0) { |
| 135 | // Do the check: |
| 136 | colCheck = 0; |
| 137 | for (let i = this.kingPos['b'][0] + 1; i < this.kingPos['w'][0]; i++) { |
| 138 | if (this.board[i][m.end.y] != V.EMPTY) { |
| 139 | colCheck++; |
| 140 | break; |
| 141 | } |
| 142 | } |
| 143 | return colCheck == 1; |
| 144 | } |
| 145 | // Check already done: |
| 146 | return colCheck == 1; |
| 147 | }); |
| 148 | } |
| 149 | |
| 150 | getPotentialPawnMoves([x, y]) { |
| 151 | const c = this.getColor(x, y); |
| 152 | const shiftX = (c == 'w' ? -1 : 1); |
| 153 | const crossedRiver = (c == 'w' && x <= 4 || c == 'b' && x >= 5); |
| 154 | const lastRank = (c == 'w' && x == 0 || c == 'b' && x == 9); |
| 155 | let steps = []; |
| 156 | if (!lastRank) steps.push([shiftX, 0]); |
| 157 | if (crossedRiver) { |
| 158 | if (y > 0) steps.push([0, -1]); |
| 159 | if (y < 9) steps.push([0, 1]); |
| 160 | } |
| 161 | return super.getSlideNJumpMoves([x, y], steps, 1); |
| 162 | } |
| 163 | |
| 164 | knightStepsFromRookStep(step) { |
| 165 | if (step[0] == 0) return [ [1, 2*step[1]], [-1, 2*step[1]] ]; |
| 166 | return [ [2*step[0], 1], [2*step[0], -1] ]; |
| 167 | } |
| 168 | |
| 169 | getPotentialKnightMoves([x, y]) { |
| 170 | let steps = []; |
| 171 | for (let rookStep of ChessRules.steps[V.ROOK]) { |
| 172 | const [i, j] = [x + rookStep[0], y + rookStep[1]]; |
| 173 | if (V.OnBoard(i, j) && this.board[i][j] == V.EMPTY) { |
| 174 | Array.prototype.push.apply(steps, |
| 175 | // These moves might be impossible, but need to be checked: |
| 176 | this.knightStepsFromRookStep(rookStep)); |
| 177 | } |
| 178 | } |
| 179 | return super.getSlideNJumpMoves([x, y], steps, 1); |
| 180 | } |
| 181 | |
| 182 | getPotentialElephantMoves([x, y]) { |
| 183 | let steps = []; |
| 184 | const c = this.getColor(x, y); |
| 185 | for (let bishopStep of ChessRules.steps[V.BISHOP]) { |
| 186 | const [i, j] = [x + bishopStep[0], y + bishopStep[1]]; |
| 187 | if (V.OnBoard(i, j) && this.board[i][j] == V.EMPTY) { |
| 188 | const [newX, newY] = [x + 2*bishopStep[0], y + 2*bishopStep[1]]; |
| 189 | if ((c == 'w' && newX >= 5) || (c == 'b' && newX <= 4)) |
| 190 | // A priori valid (elephant don't cross the river) |
| 191 | steps.push(bishopStep.map(s => 2*s)); |
| 192 | // "out of board" checks delayed to next method |
| 193 | } |
| 194 | } |
| 195 | return super.getSlideNJumpMoves([x, y], steps, 1); |
| 196 | } |
| 197 | |
| 198 | getPotentialAdvisorMoves([x, y]) { |
| 199 | // Diagonal steps inside palace |
| 200 | const c = this.getColor(x, y); |
| 201 | if ( |
| 202 | y != 4 || |
| 203 | (c == 'w' && x != V.size.x - 2) || |
| 204 | (c == 'b' && x != 1) |
| 205 | ) { |
| 206 | // In a corner: only one step available |
| 207 | let step = null; |
| 208 | const direction = (c == 'w' ? -1 : 1); |
| 209 | if ((c == 'w' && x == V.size.x - 1) || (c == 'b' && x == 0)) { |
| 210 | // On first line |
| 211 | if (y == 3) step = [direction, 1]; |
| 212 | else step = [direction, -1]; |
| 213 | } |
| 214 | else { |
| 215 | // On third line |
| 216 | if (y == 3) step = [-direction, 1]; |
| 217 | else step = [-direction, -1]; |
| 218 | } |
| 219 | return super.getSlideNJumpMoves([x, y], [step], 1); |
| 220 | } |
| 221 | // In the middle of the palace: |
| 222 | return ( |
| 223 | super.getSlideNJumpMoves([x, y], ChessRules.steps[V.BISHOP], 1) |
| 224 | ); |
| 225 | } |
| 226 | |
| 227 | getPotentialKingMoves([x, y]) { |
| 228 | // Orthogonal steps inside palace |
| 229 | const c = this.getColor(x, y); |
| 230 | if ( |
| 231 | y != 4 || |
| 232 | (c == 'w' && x != V.size.x - 2) || |
| 233 | (c == 'b' && x != 1) |
| 234 | ) { |
| 235 | // On the edge: only two steps available |
| 236 | let steps = []; |
| 237 | if (x < (c == 'w' ? V.size.x - 1 : 2)) steps.push([1, 0]); |
| 238 | if (x > (c == 'w' ? V.size.x - 3 : 0)) steps.push([-1, 0]); |
| 239 | if (y > 3) steps.push([0, -1]); |
| 240 | if (y < 5) steps.push([0, 1]); |
| 241 | return super.getSlideNJumpMoves([x, y], steps, 1); |
| 242 | } |
| 243 | // In the middle of the palace: |
| 244 | return ( |
| 245 | super.getSlideNJumpMoves([x, y], ChessRules.steps[V.ROOK], 1) |
| 246 | ); |
| 247 | } |
| 248 | |
| 249 | // NOTE: duplicated from Shako (TODO?) |
| 250 | getPotentialCannonMoves([x, y]) { |
| 251 | const oppCol = V.GetOppCol(this.turn); |
| 252 | let moves = []; |
| 253 | // Look in every direction until an obstacle (to jump) is met |
| 254 | for (const step of V.steps[V.ROOK]) { |
| 255 | let i = x + step[0]; |
| 256 | let j = y + step[1]; |
| 257 | while (V.OnBoard(i, j) && this.board[i][j] == V.EMPTY) { |
| 258 | moves.push(this.getBasicMove([x, y], [i, j])); |
| 259 | i += step[0]; |
| 260 | j += step[1]; |
| 261 | } |
| 262 | // Then, search for an enemy |
| 263 | i += step[0]; |
| 264 | j += step[1]; |
| 265 | while (V.OnBoard(i, j) && this.board[i][j] == V.EMPTY) { |
| 266 | i += step[0]; |
| 267 | j += step[1]; |
| 268 | } |
| 269 | if (V.OnBoard(i, j) && this.getColor(i, j) == oppCol) |
| 270 | moves.push(this.getBasicMove([x, y], [i, j])); |
| 271 | } |
| 272 | return moves; |
| 273 | } |
| 274 | |
| 275 | // (King) Never attacked by advisor, since it stays in the palace |
| 276 | // Also, never attacked by elephants since they don't cross the river. |
| 277 | isAttacked(sq, color) { |
| 278 | return ( |
| 279 | this.isAttackedByPawn(sq, color) || |
| 280 | super.isAttackedByRook(sq, color) || |
| 281 | this.isAttackedByKnight(sq, color) || |
| 282 | this.isAttackedByCannon(sq, color) |
| 283 | ); |
| 284 | } |
| 285 | |
| 286 | isAttackedByPawn([x, y], color) { |
| 287 | // The pawn necessarily crossed the river (attack on king) |
| 288 | const shiftX = (color == 'w' ? 1 : -1); //shift from king |
| 289 | return super.isAttackedBySlideNJump( |
| 290 | [x, y], color, V.PAWN, [[shiftX, 0], [0, 1], [0, -1]], 1); |
| 291 | } |
| 292 | |
| 293 | knightStepsFromBishopStep(step) { |
| 294 | return [ [2*step[0], step[1]], [step[0], 2*step[1]] ]; |
| 295 | } |
| 296 | |
| 297 | isAttackedByKnight([x, y], color) { |
| 298 | // Check bishop steps: if empty, look continuation knight step |
| 299 | let steps = []; |
| 300 | for (let s of ChessRules.steps[V.BISHOP]) { |
| 301 | const [i, j] = [x + s[0], y + s[1]]; |
| 302 | if ( |
| 303 | V.OnBoard(i, j) && |
| 304 | this.board[i][j] == V.EMPTY |
| 305 | ) { |
| 306 | Array.prototype.push.apply(steps, this.knightStepsFromBishopStep(s)); |
| 307 | } |
| 308 | } |
| 309 | return ( |
| 310 | super.isAttackedBySlideNJump([x, y], color, V.KNIGHT, steps, 1) |
| 311 | ); |
| 312 | } |
| 313 | |
| 314 | // NOTE: duplicated from Shako (TODO?) |
| 315 | isAttackedByCannon([x, y], color) { |
| 316 | // Reversed process: is there an obstacle in line, |
| 317 | // and a cannon next in the same line? |
| 318 | for (const step of V.steps[V.ROOK]) { |
| 319 | let [i, j] = [x+step[0], y+step[1]]; |
| 320 | while (V.OnBoard(i, j) && this.board[i][j] == V.EMPTY) { |
| 321 | i += step[0]; |
| 322 | j += step[1]; |
| 323 | } |
| 324 | if (V.OnBoard(i, j)) { |
| 325 | // Keep looking in this direction |
| 326 | i += step[0]; |
| 327 | j += step[1]; |
| 328 | while (V.OnBoard(i, j) && this.board[i][j] == V.EMPTY) { |
| 329 | i += step[0]; |
| 330 | j += step[1]; |
| 331 | } |
| 332 | if ( |
| 333 | V.OnBoard(i, j) && |
| 334 | this.getPiece(i, j) == V.CANNON && |
| 335 | this.getColor(i, j) == color |
| 336 | ) { |
| 337 | return true; |
| 338 | } |
| 339 | } |
| 340 | } |
| 341 | return false; |
| 342 | } |
| 343 | |
| 344 | getCurrentScore() { |
| 345 | if (this.atLeastOneMove()) return "*"; |
| 346 | // Game over |
| 347 | const color = this.turn; |
| 348 | // No valid move: I lose! |
| 349 | return (color == "w" ? "0-1" : "1-0"); |
| 350 | } |
| 351 | |
| 352 | static get VALUES() { |
| 353 | return { |
| 354 | p: 1, |
| 355 | r: 9, |
| 356 | n: 4, |
| 357 | e: 2.5, |
| 358 | a: 2, |
| 359 | c: 4.5, |
| 360 | k: 1000 |
| 361 | }; |
| 362 | } |
| 363 | |
| 364 | evalPosition() { |
| 365 | let evaluation = 0; |
| 366 | for (let i = 0; i < V.size.x; i++) { |
| 367 | for (let j = 0; j < V.size.y; j++) { |
| 368 | if (this.board[i][j] != V.EMPTY) { |
| 369 | const c = this.getColor(i, j); |
| 370 | const sign = (c == 'w' ? 1 : -1); |
| 371 | const piece = this.getPiece(i, j); |
| 372 | let pieceEval = V.VALUES[this.getPiece(i, j)]; |
| 373 | if ( |
| 374 | piece == V.PAWN && |
| 375 | ( |
| 376 | (c == 'w' && i <= 4) || |
| 377 | (c == 'b' && i >= 5) |
| 378 | ) |
| 379 | ) { |
| 380 | // Pawn crossed the river: higher value |
| 381 | pieceEval++; |
| 382 | } |
| 383 | evaluation += sign * pieceEval; |
| 384 | } |
| 385 | } |
| 386 | } |
| 387 | return evaluation; |
| 388 | } |
| 389 | |
| 390 | static get SEARCH_DEPTH() { |
| 391 | return 2; |
| 392 | } |
| 393 | |
| 394 | static GenRandInitFen() { |
| 395 | // No randomization here (TODO?) |
| 396 | return "rneakaenr/9/1c5c1/p1p1p1p1p/9/9/P1P1P1P1P/1C5C1/9/RNEAKAENR w 0"; |
| 397 | } |
| 398 | |
| 399 | getNotation(move) { |
| 400 | let notation = super.getNotation(move); |
| 401 | if (move.vanish.length == 2 && move.vanish[0].p == V.PAWN) |
| 402 | notation = "P" + notation.substr(1); |
| 403 | return notation; |
| 404 | } |
| 405 | |
| 406 | }; |