Commit | Line | Data |
---|---|---|
3453829e BA |
1 | #' selectVariables |
2 | #' | |
3 | #' It is a function which construct, for a given lambda, the sets of relevant variables. | |
4 | #' | |
5 | #' @param phiInit an initial estimator for phi (size: p*m*k) | |
6 | #' @param rhoInit an initial estimator for rho (size: m*m*k) | |
7 | #' @param piInit an initial estimator for pi (size : k) | |
8 | #' @param gamInit an initial estimator for gamma | |
9 | #' @param mini minimum number of iterations in EM algorithm | |
10 | #' @param maxi maximum number of iterations in EM algorithm | |
11 | #' @param gamma power in the penalty | |
12 | #' @param glambda grid of regularization parameters | |
13 | #' @param X matrix of regressors | |
14 | #' @param Y matrix of responses | |
15 | #' @param thresh real, threshold to say a variable is relevant, by default = 1e-8 | |
16 | #' @param eps threshold to say that EM algorithm has converged | |
17 | #' @param ncores Number or cores for parallel execution (1 to disable) | |
18 | #' | |
19 | #' @return a list of outputs, for each lambda in grid: selected,Rho,Pi | |
20 | #' | |
21 | #' @examples TODO | |
22 | #' | |
23 | #' @export | |
24 | #' | |
25 | selectVariables <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, | |
26 | glambda, X, Y, thresh = 1e-08, eps, ncores = 3, fast) | |
27 | { | |
28 | if (ncores > 1) { | |
29 | cl <- parallel::makeCluster(ncores, outfile = "") | |
30 | parallel::clusterExport(cl = cl, varlist = c("phiInit", "rhoInit", "gamInit", | |
31 | "mini", "maxi", "glambda", "X", "Y", "thresh", "eps"), envir = environment()) | |
32 | } | |
33 | ||
34 | # Computation for a fixed lambda | |
35 | computeCoefs <- function(lambda) | |
36 | { | |
37 | params <- EMGLLF(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, | |
38 | X, Y, eps, fast) | |
39 | ||
40 | p <- ncol(X) | |
41 | m <- ncol(Y) | |
42 | ||
43 | # selectedVariables: list where element j contains vector of selected variables | |
44 | # in [1,m] | |
45 | selectedVariables <- lapply(1:p, function(j) { | |
46 | # from boolean matrix mxk of selected variables obtain the corresponding boolean | |
47 | # m-vector, and finally return the corresponding indices | |
48 | if (m>1) { | |
49 | seq_len(m)[apply(abs(params$phi[j, , ]) > thresh, 1, any)] | |
50 | } else { | |
51 | if (any(params$phi[j, , ] > thresh)) | |
52 | 1 | |
53 | else | |
54 | numeric(0) | |
55 | } | |
56 | }) | |
57 | ||
58 | list(selected = selectedVariables, Rho = params$rho, Pi = params$pi) | |
59 | } | |
60 | ||
61 | # For each lambda in the grid, we compute the coefficients | |
62 | out <- | |
63 | if (ncores > 1) { | |
64 | parLapply(cl, glambda, computeCoefs) | |
65 | } else { | |
66 | lapply(glambda, computeCoefs) | |
67 | } | |
68 | if (ncores > 1) | |
69 | parallel::stopCluster(cl) | |
70 | ||
71 | print(out) | |
72 | # Suppress models which are computed twice En fait, ca ca fait la comparaison de | |
73 | # tous les parametres On veut juste supprimer ceux qui ont les memes variables | |
74 | # sélectionnées | |
75 | # sha1_array <- lapply(out, digest::sha1) out[ duplicated(sha1_array) ] | |
76 | selec <- lapply(out, function(model) model$selected) | |
77 | ind_dup <- duplicated(selec) | |
78 | ind_uniq <- which(!ind_dup) | |
79 | out2 <- list() | |
80 | for (l in 1:length(ind_uniq)) | |
81 | out2[[l]] <- out[[ind_uniq[l]]] | |
82 | out2 | |
83 | } |