Commit | Line | Data |
---|---|---|
7064275b | 1 | #' selectVariables |
bb551124 | 2 | #' |
7064275b | 3 | #' It is a function which construct, for a given lambda, the sets of relevant variables. |
e01c9b1f | 4 | #' |
5 | #' @param phiInit an initial estimator for phi (size: p*m*k) | |
6 | #' @param rhoInit an initial estimator for rho (size: m*m*k) | |
09ab3c16 | 7 | #' @param piInit an initial estimator for pi (size : k) |
e01c9b1f | 8 | #' @param gamInit an initial estimator for gamma |
09ab3c16 BA |
9 | #' @param mini minimum number of iterations in EM algorithm |
10 | #' @param maxi maximum number of iterations in EM algorithm | |
11 | #' @param gamma power in the penalty | |
e01c9b1f | 12 | #' @param glambda grid of regularization parameters |
09ab3c16 BA |
13 | #' @param X matrix of regressors |
14 | #' @param Y matrix of responses | |
43d76c49 | 15 | #' @param thresh real, threshold to say a variable is relevant, by default = 1e-8 |
16 | #' @param eps threshold to say that EM algorithm has converged | |
4cc632c9 | 17 | #' @param ncores Number or cores for parallel execution (1 to disable) |
e01c9b1f | 18 | #' |
7064275b | 19 | #' @return a list of outputs, for each lambda in grid: selected,Rho,Pi |
cad71b2c BA |
20 | #' |
21 | #' @examples TODO | |
e01c9b1f | 22 | #' |
cad71b2c | 23 | #' @export |
bb551124 BA |
24 | #' |
25 | selectVariables = function(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,glambda, | |
43d76c49 | 26 | X,Y,thresh=1e-8,eps, ncores=3, fast=TRUE) |
09ab3c16 | 27 | { |
fb6e49cb | 28 | if (ncores > 1) |
29 | { | |
30 | cl = parallel::makeCluster(ncores, outfile='') | |
31 | parallel::clusterExport(cl=cl, | |
43d76c49 | 32 | varlist=c("phiInit","rhoInit","gamInit","mini","maxi","glambda","X","Y","thresh","eps"), |
fb6e49cb | 33 | envir=environment()) |
34 | } | |
35 | ||
36 | # Computation for a fixed lambda | |
37 | computeCoefs <- function(lambda) | |
38 | { | |
43d76c49 | 39 | params = EMGLLF(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,lambda,X,Y,eps,fast) |
fb6e49cb | 40 | |
41 | p = dim(phiInit)[1] | |
42 | m = dim(phiInit)[2] | |
43 | ||
44 | #selectedVariables: list where element j contains vector of selected variables in [1,m] | |
45 | selectedVariables = lapply(1:p, function(j) { | |
46 | #from boolean matrix mxk of selected variables obtain the corresponding boolean m-vector, | |
47 | #and finally return the corresponding indices | |
48 | seq_len(m)[ apply( abs(params$phi[j,,]) > thresh, 1, any ) ] | |
49 | }) | |
50 | ||
51 | list("selected"=selectedVariables,"Rho"=params$rho,"Pi"=params$pi) | |
52 | } | |
53 | ||
54 | # For each lambda in the grid, we compute the coefficients | |
55 | out <- | |
56 | if (ncores > 1) | |
57 | parLapply(cl, glambda, computeCoefs) | |
58 | else | |
59 | lapply(glambda, computeCoefs) | |
60 | if (ncores > 1) | |
61 | parallel::stopCluster(cl) | |
62 | # Suppress models which are computed twice | |
63 | #En fait, ca ca fait la comparaison de tous les parametres | |
64 | #On veut juste supprimer ceux qui ont les memes variables sélectionnées | |
65 | #sha1_array <- lapply(out, digest::sha1) | |
66 | #out[ duplicated(sha1_array) ] | |
67 | selec = lapply(out, function(model) model$selected) | |
68 | ind_dup = duplicated(selec) | |
69 | ind_uniq = which(!ind_dup) | |
70 | out2 = list() | |
71 | for (l in 1:length(ind_uniq)){ | |
72 | out2[[l]] = out[[ind_uniq[l]]] | |
73 | } | |
74 | out2 | |
09ab3c16 | 75 | } |