4c9cc558 |
1 | #' Plot |
2 | #' |
3 | #' It is a function which plots relevant parameters |
4 | #' |
5 | #' |
6 | #' @return several plots |
7 | #' |
8 | #' @examples TODO |
9 | #' |
10 | #' @export |
11 | #' |
12 | plot_valse = function(){ |
13 | require("gridExtra") |
14 | require("ggplot2") |
15 | require("reshape2") |
16 | |
17 | ## regression matrices |
18 | gReg = list() |
19 | for (r in 1:K){ |
20 | Melt = melt(t((model$phi[,,r]))) |
21 | gReg[[r]] = ggplot(data = Melt, aes(x=Var1, y=Var2, fill=value)) + geom_tile() + |
22 | scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, space = "Lab") + |
23 | ggtitle(paste("Regression matrices in cluster",r)) |
24 | } |
25 | print(gReg) |
26 | |
27 | ## Differences between two clusters |
28 | k1 = 1 |
29 | k2 = 2 |
30 | Melt = melt(t(model$phi[,,k1]-model$phi[,,k2])) |
31 | gDiff = ggplot(data = Melt, aes(x=Var1, y=Var2, fill=value)) + geom_tile() + |
32 | scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, space = "Lab") + |
33 | ggtitle(paste("Difference between regression matrices in cluster",k1, "and", k2)) |
34 | print(gDiff) |
35 | |
36 | ### Covariance matrices |
37 | matCov = matrix(NA, nrow = dim(model$rho[,,1])[1], ncol = K) |
38 | for (r in 1:K){ |
39 | matCov[,r] = diag(model$rho[,,r]) |
40 | } |
41 | MeltCov = melt(matCov) |
42 | gCov = ggplot(data =MeltCov, aes(x=Var1, y=Var2, fill=value)) + geom_tile() + |
43 | scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, space = "Lab") + |
44 | ggtitle("Covariance matrices") |
45 | print(gCov ) |
46 | |
47 | ### proportions |
48 | Gam = matrix(0, ncol = K, nrow = n) |
49 | gam = Gam |
50 | for (i in 1:n){ |
51 | for (r in 1:K){ |
52 | sqNorm2 = sum( (Y[i,]%*%model$rho[,,r]-X[i,]%*%model$phi[,,r])^2 ) |
53 | Gam[i,r] = model$pi[r] * exp(-0.5*sqNorm2)* det(model$rho[,,r]) |
54 | } |
55 | gam[i,] = Gam[i,] / sum(Gam[i,]) |
56 | } |
57 | affec = apply(gam, 1,which.max) |
58 | gam2 = matrix(NA, ncol = K, nrow = n) |
59 | for (i in 1:n){ |
60 | gam2[i, ] = c(gam[i, affec[i]], affec[i]) |
61 | } |
62 | bp <- ggplot(data.frame(gam2), aes(x=X2, y=X1, color=X2, group = X2)) + |
63 | geom_boxplot() + theme(legend.position = "none") |
64 | print(bp + background_grid(major = "xy", minor = "none")) |
65 | |
66 | ### Mean in each cluster |
67 | XY = cbind(X,Y) |
68 | XY_class= list() |
69 | meanPerClass= matrix(0, ncol = K, nrow = dim(XY)[2]) |
70 | for (r in 1:K){ |
71 | XY_class[[r]] = XY[affec == r, ] |
72 | meanPerClass[,r] = apply(XY_class[[r]], 2, mean) |
73 | } |
74 | data = data.frame(mean = as.vector(meanPerClass), cluster = as.character(rep(1:K, each = dim(XY)[2])), time = rep(1:dim(XY)[2],K)) |
75 | g = ggplot(data, aes(x=time, y = mean, group = cluster, color = cluster)) |
76 | print(g + geom_line(aes(linetype=cluster, color=cluster))+ geom_point(aes(color=cluster)) + ggtitle('Mean per cluster')) |
77 | |
78 | } |