no need to generate random IO params: migrate in test. Add roxygen2 NAMESPACE-generat...
[valse.git] / pkg / R / main.R
CommitLineData
086ca318
BA
1#' valse
2#'
3#' Main function
4#'
5#' @param X matrix of covariates (of size n*p)
6#' @param Y matrix of responses (of size n*m)
7#' @param procedure among 'LassoMLE' or 'LassoRank'
8#' @param selecMod method to select a model among 'DDSE', 'DJump', 'BIC' or 'AIC'
9#' @param gamma integer for the power in the penaly, by default = 1
10#' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10
11#' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100
12#' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4
13#' @param kmin integer, minimum number of clusters, by default = 2
14#' @param kmax integer, maximum number of clusters, by default = 10
15#' @param rang.min integer, minimum rank in the low rank procedure, by default = 1
16#' @param rang.max integer, maximum rank in the
17#'
18#' @return a list with estimators of parameters
19#'
20#' @examples
21#' #TODO: a few examples
22#' @export
23valse = function(X,Y,procedure = 'LassoMLE',selecMod = 'DDSE',gamma = 1,mini = 10,
24 maxi = 50,eps = 1e-4,kmin = 2,kmax = 2,
25 rang.min = 1,rang.max = 10)
26{
27 ####################
28 # compute all models
29 ####################
30
31 p = dim(X)[2]
32 m = dim(Y)[2]
33 n = dim(X)[1]
34
35 model = list()
36 tableauRecap = array(0, dim=c(1000,4))
37 cpt = 0
38 print("main loop: over all k and all lambda")
39
40 for (k in kmin:kmax)
41 {
42 print(k)
43 print("Parameters initialization")
44 #smallEM initializes parameters by k-means and regression model in each component,
45 #doing this 20 times, and keeping the values maximizing the likelihood after 10
46 #iterations of the EM algorithm.
47 init = initSmallEM(k, X, Y)
48 phiInit <- init$phiInit
49 rhoInit <- init$rhoInit
50 piInit <- init$piInit
51 gamInit <- init$gamInit
52 grid_lambda <- computeGridLambda(phiInit, rhoInit, piInit, gamInit, X, Y, gamma, mini, maxi, eps)
53
54 if (length(grid_lambda)>100)
55 grid_lambda = grid_lambda[seq(1, length(grid_lambda), length.out = 100)]
56 print("Compute relevant parameters")
57 #select variables according to each regularization parameter
58 #from the grid: A1 corresponding to selected variables, and
59 #A2 corresponding to unselected variables.
60
61 params = selectiontotale(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,grid_lambda,X,Y,1e-8,eps)
62 #params2 = selectVariables(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,grid_lambda[seq(1,length(grid_lambda), by=3)],X,Y,1e-8,eps)
63 ## etrange : params et params 2 sont différents ...
64 selected <- params$selected
65 Rho <- params$Rho
66 Pi <- params$Pi
67
68 if (procedure == 'LassoMLE')
39046da6 69 {
086ca318
BA
70 print('run the procedure Lasso-MLE')
71 #compute parameter estimations, with the Maximum Likelihood
72 #Estimator, restricted on selected variables.
73 model[[k]] = constructionModelesLassoMLE(phiInit, rhoInit,piInit,gamInit,mini,maxi,gamma,X,Y,thresh,eps,selected)
74 llh = matrix(ncol = 2)
75 for (l in seq_along(model[[k]]))
76 llh = rbind(llh, model[[k]][[l]]$llh)
77 LLH = llh[-1,1]
78 D = llh[-1,2]
79 }
80 else
39046da6 81 {
086ca318
BA
82 print('run the procedure Lasso-Rank')
83 #compute parameter estimations, with the Low Rank
84 #Estimator, restricted on selected variables.
85 model = constructionModelesLassoRank(Pi, Rho, mini, maxi, X, Y, eps,
86 A1, rank.min, rank.max)
87
88 ################################################
89 ### Regarder la SUITE
90 phi = runProcedure2()$phi
91 Phi2 = Phi
92 if (dim(Phi2)[1] == 0)
93 Phi[, , 1:k,] <- phi
94 else
95 {
96 Phi <- array(0, dim = c(p, m, kmax, dim(Phi2)[4] + dim(phi)[4]))
97 Phi[, , 1:(dim(Phi2)[3]), 1:(dim(Phi2)[4])] <<- Phi2
98 Phi[, , 1:k,-(1:(dim(Phi2)[4]))] <<- phi
99 }
100 }
101 tableauRecap[(cpt+1):(cpt+length(model[[k]])), ] = matrix(c(LLH, D, rep(k, length(model[[k]])), 1:length(model[[k]])), ncol = 4)
102 cpt = cpt+length(model[[k]])
103 }
104 print('Model selection')
105 tableauRecap = tableauRecap[rowSums(tableauRecap[, 2:4])!=0,]
106 tableauRecap = tableauRecap[(tableauRecap[,1])!=Inf,]
107 data = cbind(1:dim(tableauRecap)[1], tableauRecap[,2], tableauRecap[,2], tableauRecap[,1])
108 require(capushe)
109 modSel = capushe(data, n)
110 indModSel <-
111 if (selecMod == 'DDSE')
112 as.numeric(modSel@DDSE@model)
113 else if (selecMod == 'Djump')
114 as.numeric(modSel@Djump@model)
115 else if (selecMod == 'BIC')
116 modSel@BIC_capushe$model
117 else if (selecMod == 'AIC')
118 modSel@AIC_capushe$model
119 model[[tableauRecap[indModSel,3]]][[tableauRecap[indModSel,4]]]
120}