small fix + attempt for a correct 'tableauRecap'
[valse.git] / pkg / R / main.R
CommitLineData
086ca318
BA
1#' valse
2#'
3#' Main function
4#'
5#' @param X matrix of covariates (of size n*p)
6#' @param Y matrix of responses (of size n*m)
7#' @param procedure among 'LassoMLE' or 'LassoRank'
8#' @param selecMod method to select a model among 'DDSE', 'DJump', 'BIC' or 'AIC'
9#' @param gamma integer for the power in the penaly, by default = 1
10#' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10
11#' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100
12#' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4
13#' @param kmin integer, minimum number of clusters, by default = 2
14#' @param kmax integer, maximum number of clusters, by default = 10
15#' @param rang.min integer, minimum rank in the low rank procedure, by default = 1
16#' @param rang.max integer, maximum rank in the
17#'
18#' @return a list with estimators of parameters
19#'
20#' @examples
21#' #TODO: a few examples
22#' @export
2279a641 23valse = function(X, Y, procedure='LassoMLE', selecMod='DDSE', gamma=1, mini=10, maxi=50,
086cf723 24 eps=1e-4, kmin=2, kmax=4, rang.min=1, rang.max=10, ncores_outer=1, ncores_inner=1, size_coll_mod = 50,
2279a641 25 verbose=FALSE)
086ca318 26{
086ca318
BA
27 p = dim(X)[2]
28 m = dim(Y)[2]
29 n = dim(X)[1]
4cc632c9 30
4cc632c9
BA
31 if (verbose)
32 print("main loop: over all k and all lambda")
33
2279a641 34 if (ncores_outer > 1)
086ca318 35 {
08f4604c 36 cl = parallel::makeCluster(ncores_outer, outfile='')
4cc632c9
BA
37 parallel::clusterExport( cl=cl, envir=environment(), varlist=c("X","Y","procedure",
38 "selecMod","gamma","mini","maxi","eps","kmin","kmax","rang.min","rang.max",
08f4604c 39 "ncores_outer","ncores_inner","verbose","p","m") )
4cc632c9
BA
40 }
41
0eb161e3
BA
42 # Compute models with k components
43 computeModels <- function(k)
4cc632c9 44 {
2279a641 45 if (ncores_outer > 1)
4cc632c9
BA
46 require("valse") #nodes start with an empty environment
47
48 if (verbose)
49 print(paste("Parameters initialization for k =",k))
0eb161e3 50 #smallEM initializes parameters by k-means and regression model in each component,
086ca318
BA
51 #doing this 20 times, and keeping the values maximizing the likelihood after 10
52 #iterations of the EM algorithm.
4cc632c9
BA
53 P = initSmallEM(k, X, Y)
54 grid_lambda <- computeGridLambda(P$phiInit, P$rhoInit, P$piInit, P$gamInit, X, Y,
55 gamma, mini, maxi, eps)
086cf723 56 if (length(grid_lambda)>size_coll_mod)
57 grid_lambda = grid_lambda[seq(1, length(grid_lambda), length.out = size_coll_mod)]
4cc632c9
BA
58
59 if (verbose)
60 print("Compute relevant parameters")
086ca318 61 #select variables according to each regularization parameter
0eb161e3
BA
62 #from the grid: S$selected corresponding to selected variables
63 S = selectVariables(P$phiInit, P$rhoInit, P$piInit, P$gamInit, mini, maxi, gamma,
64 grid_lambda, X, Y, 1e-8, eps, ncores_inner) #TODO: 1e-8 as arg?! eps?
086cf723 65
086ca318 66 if (procedure == 'LassoMLE')
39046da6 67 {
4cc632c9
BA
68 if (verbose)
69 print('run the procedure Lasso-MLE')
086ca318
BA
70 #compute parameter estimations, with the Maximum Likelihood
71 #Estimator, restricted on selected variables.
08f4604c
BA
72 models <- constructionModelesLassoMLE(P$phiInit, P$rhoInit, P$piInit, P$gamInit,
73 mini, maxi, gamma, X, Y, thresh, eps, S, ncores_inner, artefact = 1e3, verbose)
086ca318
BA
74 }
75 else
39046da6 76 {
4cc632c9
BA
77 if (verbose)
78 print('run the procedure Lasso-Rank')
086ca318
BA
79 #compute parameter estimations, with the Low Rank
80 #Estimator, restricted on selected variables.
0eb161e3 81 models <- constructionModelesLassoRank(S$Pi, S$Rho, mini, maxi, X, Y, eps, A1,
2279a641 82 rank.min, rank.max, ncores_inner, verbose)
086ca318 83 }
08f4604c
BA
84 #attention certains modeles sont NULL après selectVariables
85 models = models[sapply(models, function(cell) !is.null(cell))]
0eb161e3 86 models
086ca318 87 }
4cc632c9 88
0eb161e3
BA
89 # List (index k) of lists (index lambda) of models
90 models_list <-
19041906 91 if (ncores_outer > 1)
0eb161e3 92 parLapply(cl, kmin:kmax, computeModels)
4cc632c9 93 else
0eb161e3 94 lapply(kmin:kmax, computeModels)
19041906 95 if (ncores_outer > 1)
4cc632c9
BA
96 parallel::stopCluster(cl)
97
0eb161e3
BA
98 if (! requireNamespace("capushe", quietly=TRUE))
99 {
100 warning("'capushe' not available: returning all models")
101 return (models_list)
102 }
103
08f4604c 104 # Get summary "tableauRecap" from models
2e813ad2
BA
105 tableauRecap = do.call( rbind, lapply( seq_along(models_list), function(i) {
106 models <- models_list[[i]]
08f4604c 107 #Pour un groupe de modeles (même k, différents lambda):
2e813ad2
BA
108 LLH <- sapply( models, function(model) model$llh )
109 k == length(models[[1]]$pi)
110 # TODO: chuis pas sûr du tout des lignes suivantes...
111 # J'ai l'impression qu'il manque des infos
112 sumPen = sapply( models, function(model)
113 sum( model$pi^gamma * sapply(1:k, function(r) sum(abs(model$phi[,,r]))) ) )
114 data.frame(model=paste(i,".",seq_along(models),sep=""),
115 pen=sumPen/1000, complexity=sumPen, contrast=LLH)
08f4604c 116 } ) )
2e813ad2 117
0eb161e3 118 modSel = capushe::capushe(data, n)
086ca318
BA
119 indModSel <-
120 if (selecMod == 'DDSE')
121 as.numeric(modSel@DDSE@model)
122 else if (selecMod == 'Djump')
123 as.numeric(modSel@Djump@model)
124 else if (selecMod == 'BIC')
125 modSel@BIC_capushe$model
126 else if (selecMod == 'AIC')
127 modSel@AIC_capushe$model
2e813ad2 128
086cf723 129 models_list[[tableauRecap[indModSel,3]]][[tableauRecap[indModSel,4]]]
086ca318 130}