Commit | Line | Data |
---|---|---|
0ba1b11c | 1 | #' generateXY |
3453829e BA |
2 | #' |
3 | #' Generate a sample of (X,Y) of size n | |
4 | #' | |
5 | #' @param n sample size | |
8b284010 | 6 | #' @param prop proportion for each cluster |
3453829e BA |
7 | #' @param meanX matrix of group means for covariates (of size p) |
8 | #' @param covX covariance for covariates (of size p*p) | |
1196a43d | 9 | #' @param beta regression matrix, of size p*m*k |
8b284010 | 10 | #' @param covY covariance for the response vector (of size m*m) |
3453829e | 11 | #' |
6af1d489 | 12 | #' @return list with X (of size n*p) and Y (of size n*m) |
3453829e BA |
13 | #' |
14 | #' @export | |
8b284010 | 15 | generateXY <- function(n, prop, meanX, beta, covX, covY) |
3453829e BA |
16 | { |
17 | p <- dim(covX)[1] | |
18 | m <- dim(covY)[1] | |
8b284010 | 19 | k <- dim(beta)[3] |
3453829e BA |
20 | |
21 | X <- matrix(nrow = 0, ncol = p) | |
22 | Y <- matrix(nrow = 0, ncol = m) | |
23 | ||
24 | # random generation of the size of each population in X~Y (unordered) | |
8b284010 | 25 | sizePop <- stats::rmultinom(1, n, prop) |
3453829e BA |
26 | class <- c() #map i in 1:n --> index of class in 1:k |
27 | ||
28 | for (i in 1:k) | |
29 | { | |
30 | class <- c(class, rep(i, sizePop[i])) | |
31 | newBlockX <- MASS::mvrnorm(sizePop[i], meanX, covX) | |
32 | X <- rbind(X, newBlockX) | |
0ba1b11c | 33 | Y <- rbind(Y, t(apply(newBlockX, 1, function(row) MASS::mvrnorm(1, row %*% |
8b284010 | 34 | beta[, , i], covY[,])))) |
3453829e BA |
35 | } |
36 | ||
37 | shuffle <- sample(n) | |
38 | list(X = X[shuffle, ], Y = Y[shuffle, ], class = class[shuffle]) | |
39 | } |