Commit | Line | Data |
---|---|---|
3453829e BA |
1 | #' EMGrank |
2 | #' | |
3 | #' Description de EMGrank | |
4 | #' | |
5 | #' @param Pi Parametre de proportion | |
6 | #' @param Rho Parametre initial de variance renormalisé | |
7 | #' @param mini Nombre minimal d'itérations dans l'algorithme EM | |
8 | #' @param maxi Nombre maximal d'itérations dans l'algorithme EM | |
9 | #' @param X Régresseurs | |
10 | #' @param Y Réponse | |
11 | #' @param eps Seuil pour accepter la convergence | |
12 | #' @param rank Vecteur des rangs possibles | |
13 | #' | |
14 | #' @return A list ... | |
15 | #' phi : parametre de moyenne renormalisé, calculé par l'EM | |
16 | #' LLF : log vraisemblance associé à cet échantillon, pour les valeurs estimées des paramètres | |
17 | #' | |
18 | #' @export | |
19 | EMGrank <- function(Pi, Rho, mini, maxi, X, Y, eps, rank, fast = TRUE) | |
20 | { | |
21 | if (!fast) | |
22 | { | |
23 | # Function in R | |
24 | return(.EMGrank_R(Pi, Rho, mini, maxi, X, Y, eps, rank)) | |
25 | } | |
26 | ||
27 | # Function in C | |
28 | n <- nrow(X) #nombre d'echantillons | |
29 | p <- ncol(X) #nombre de covariables | |
30 | m <- ncol(Y) #taille de Y (multivarié) | |
31 | k <- length(Pi) #nombre de composantes dans le mélange | |
32 | .Call("EMGrank", Pi, Rho, mini, maxi, X, Y, eps, as.integer(rank), phi = double(p * m * k), | |
33 | LLF = double(1), n, p, m, k, PACKAGE = "valse") | |
34 | } | |
35 | ||
36 | # helper to always have matrices as arg (TODO: put this elsewhere? improve?) --> | |
37 | # Yes, we should use by-columns storage everywhere... [later!] | |
38 | matricize <- function(X) | |
39 | { | |
40 | if (!is.matrix(X)) | |
41 | return(t(as.matrix(X))) | |
42 | return(X) | |
43 | } | |
44 | ||
45 | # R version - slow but easy to read | |
46 | .EMGrank_R <- function(Pi, Rho, mini, maxi, X, Y, eps, rank) | |
47 | { | |
48 | # matrix dimensions | |
49 | n <- nrow(X) | |
50 | p <- ncol(X) | |
51 | m <- ncol(Y) | |
52 | k <- length(Pi) | |
53 | ||
54 | # init outputs | |
55 | phi <- array(0, dim = c(p, m, k)) | |
56 | Z <- rep(1, n) | |
57 | LLF <- 0 | |
58 | ||
59 | # local variables | |
60 | Phi <- array(0, dim = c(p, m, k)) | |
61 | deltaPhi <- c() | |
62 | sumDeltaPhi <- 0 | |
63 | deltaPhiBufferSize <- 20 | |
64 | ||
65 | # main loop | |
66 | ite <- 1 | |
67 | while (ite <= mini || (ite <= maxi && sumDeltaPhi > eps)) | |
68 | { | |
69 | # M step: update for Beta ( and then phi) | |
70 | for (r in 1:k) | |
71 | { | |
72 | Z_indice <- seq_len(n)[Z == r] #indices where Z == r | |
73 | if (length(Z_indice) == 0) | |
74 | next | |
75 | # U,S,V = SVD of (t(Xr)Xr)^{-1} * t(Xr) * Yr | |
76 | s <- svd(MASS::ginv(crossprod(matricize(X[Z_indice, ]))) %*% | |
77 | crossprod(matricize(X[Z_indice, ]), matricize(Y[Z_indice, ]))) | |
78 | S <- s$d | |
79 | # Set m-rank(r) singular values to zero, and recompose best rank(r) approximation | |
80 | # of the initial product | |
81 | if (rank[r] < length(S)) | |
82 | S[(rank[r] + 1):length(S)] <- 0 | |
83 | phi[, , r] <- s$u %*% diag(S) %*% t(s$v) %*% Rho[, , r] | |
84 | } | |
85 | ||
86 | # Step E and computation of the loglikelihood | |
87 | sumLogLLF2 <- 0 | |
88 | for (i in seq_len(n)) | |
89 | { | |
90 | sumLLF1 <- 0 | |
91 | maxLogGamIR <- -Inf | |
92 | for (r in seq_len(k)) | |
93 | { | |
94 | dotProduct <- tcrossprod(Y[i, ] %*% Rho[, , r] - X[i, ] %*% phi[, , r]) | |
95 | logGamIR <- log(Pi[r]) + log(gdet(Rho[, , r])) - 0.5 * dotProduct | |
96 | # Z[i] = index of max (gam[i,]) | |
97 | if (logGamIR > maxLogGamIR) | |
98 | { | |
99 | Z[i] <- r | |
100 | maxLogGamIR <- logGamIR | |
101 | } | |
102 | sumLLF1 <- sumLLF1 + exp(logGamIR)/(2 * pi)^(m/2) | |
103 | } | |
104 | sumLogLLF2 <- sumLogLLF2 + log(sumLLF1) | |
105 | } | |
106 | ||
107 | LLF <- -1/n * sumLogLLF2 | |
108 | ||
109 | # update distance parameter to check algorithm convergence (delta(phi, Phi)) | |
110 | deltaPhi <- c(deltaPhi, max((abs(phi - Phi))/(1 + abs(phi)))) #TODO: explain? | |
111 | if (length(deltaPhi) > deltaPhiBufferSize) | |
112 | deltaPhi <- deltaPhi[2:length(deltaPhi)] | |
113 | sumDeltaPhi <- sum(abs(deltaPhi)) | |
114 | ||
115 | # update other local variables | |
116 | Phi <- phi | |
117 | ite <- ite + 1 | |
118 | } | |
119 | return(list(phi = phi, LLF = LLF)) | |
120 | } |