228ee602 |
1 | #' EMGrank |
2 | #' |
3 | #' Description de EMGrank |
4 | #' |
5 | #' @param Pi Parametre de proportion |
6 | #' @param Rho Parametre initial de variance renormalisé |
7 | #' @param mini Nombre minimal d'itérations dans l'algorithme EM |
8 | #' @param maxi Nombre maximal d'itérations dans l'algorithme EM |
9 | #' @param X Régresseurs |
10 | #' @param Y Réponse |
11 | #' @param tau Seuil pour accepter la convergence |
12 | #' @param rank Vecteur des rangs possibles |
13 | #' |
14 | #' @return A list ... |
15 | #' phi : parametre de moyenne renormalisé, calculé par l'EM |
16 | #' LLF : log vraisemblance associé à cet échantillon, pour les valeurs estimées des paramètres |
17 | #' |
18 | #' @export |
19 | EMGrank <- function(Pi, Rho, mini, maxi, X, Y, tau, rank, fast = TRUE) |
20 | { |
21 | if (!fast) |
22 | { |
23 | # Function in R |
24 | return(.EMGrank_R(Pi, Rho, mini, maxi, X, Y, tau, rank)) |
25 | } |
26 | |
27 | # Function in C |
28 | n <- nrow(X) #nombre d'echantillons |
29 | p <- ncol(X) #nombre de covariables |
30 | m <- ncol(Y) #taille de Y (multivarié) |
31 | k <- length(Pi) #nombre de composantes dans le mélange |
32 | .Call("EMGrank", Pi, Rho, mini, maxi, X, Y, tau, rank, phi = double(p * m * k), |
33 | LLF = double(1), n, p, m, k, PACKAGE = "valse") |
34 | } |
35 | |
36 | # helper to always have matrices as arg (TODO: put this elsewhere? improve?) --> |
37 | # Yes, we should use by-columns storage everywhere... [later!] |
38 | matricize <- function(X) |
39 | { |
40 | if (!is.matrix(X)) |
41 | return(t(as.matrix(X))) |
42 | return(X) |
43 | } |
44 | |
45 | # R version - slow but easy to read |
46 | .EMGrank_R <- function(Pi, Rho, mini, maxi, X, Y, tau, rank) |
47 | { |
48 | # matrix dimensions |
49 | n <- nrow(X) |
50 | p <- ncol(X) |
51 | m <- ncol(Y) |
52 | k <- length(Pi) |
53 | |
54 | # init outputs |
55 | phi <- array(0, dim = c(p, m, k)) |
56 | Z <- rep(1, n) |
57 | LLF <- 0 |
58 | |
59 | # local variables |
60 | Phi <- array(0, dim = c(p, m, k)) |
61 | deltaPhi <- c() |
62 | sumDeltaPhi <- 0 |
63 | deltaPhiBufferSize <- 20 |
64 | |
65 | # main loop |
66 | ite <- 1 |
67 | while (ite <= mini || (ite <= maxi && sumDeltaPhi > tau)) |
68 | { |
69 | # M step: update for Beta ( and then phi) |
70 | for (r in 1:k) |
71 | { |
72 | Z_indice <- seq_len(n)[Z == r] #indices where Z == r |
73 | if (length(Z_indice) == 0) |
74 | next |
75 | # U,S,V = SVD of (t(Xr)Xr)^{-1} * t(Xr) * Yr |
76 | s <- svd(MASS::ginv(crossprod(matricize(X[Z_indice, ]))) %*% |
77 | crossprod(matricize(X[Z_indice, ]), matricize(Y[Z_indice, ]))) |
78 | S <- s$d |
79 | # Set m-rank(r) singular values to zero, and recompose best rank(r) approximation |
80 | # of the initial product |
81 | if (rank[r] < length(S)) |
82 | S[(rank[r] + 1):length(S)] <- 0 |
83 | phi[, , r] <- s$u %*% diag(S) %*% t(s$v) %*% Rho[, , r] |
84 | } |
85 | |
86 | # Step E and computation of the loglikelihood |
87 | sumLogLLF2 <- 0 |
88 | for (i in seq_len(n)) |
89 | { |
90 | sumLLF1 <- 0 |
91 | maxLogGamIR <- -Inf |
92 | for (r in seq_len(k)) |
93 | { |
94 | dotProduct <- tcrossprod(Y[i, ] %*% Rho[, , r] - X[i, ] %*% phi[, , r]) |
95 | logGamIR <- log(Pi[r]) + log(gdet(Rho[, , r])) - 0.5 * dotProduct |
96 | # Z[i] = index of max (gam[i,]) |
97 | if (logGamIR > maxLogGamIR) |
98 | { |
99 | Z[i] <- r |
100 | maxLogGamIR <- logGamIR |
101 | } |
102 | sumLLF1 <- sumLLF1 + exp(logGamIR)/(2 * pi)^(m/2) |
103 | } |
104 | sumLogLLF2 <- sumLogLLF2 + log(sumLLF1) |
105 | } |
106 | |
107 | LLF <- -1/n * sumLogLLF2 |
108 | |
109 | # update distance parameter to check algorithm convergence (delta(phi, Phi)) |
110 | deltaPhi <- c(deltaPhi, max((abs(phi - Phi))/(1 + abs(phi)))) #TODO: explain? |
111 | if (length(deltaPhi) > deltaPhiBufferSize) |
112 | deltaPhi <- deltaPhi[2:length(deltaPhi)] |
113 | sumDeltaPhi <- sum(abs(deltaPhi)) |
114 | |
115 | # update other local variables |
116 | Phi <- phi |
117 | ite <- ite + 1 |
118 | } |
119 | return(list(phi = phi, LLF = LLF)) |
120 | } |