Commit | Line | Data |
---|---|---|
567a7c38 BA |
1 | EMGLLF_R = function(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,lambda,X,Y,tau) |
2 | { | |
3 | #matrix dimensions | |
4 | n = dim(X)[1] | |
5 | p = dim(phiInit)[1] | |
6 | m = dim(phiInit)[2] | |
7 | k = dim(phiInit)[3] | |
8 | ||
9 | #init outputs | |
10 | phi = phiInit | |
11 | rho = rhoInit | |
12 | pi = piInit | |
13 | LLF = rep(0, maxi) | |
14 | S = array(0, dim=c(p,m,k)) | |
15 | ||
16 | gam = gamInit | |
17 | Gram2 = array(0, dim=c(p,p,k)) | |
18 | ps2 = array(0, dim=c(p,m,k)) | |
19 | b = rep(0, k) | |
20 | X2 = array(0, dim=c(n,p,k)) | |
21 | Y2 = array(0, dim=c(n,m,k)) | |
22 | dist = 0 | |
23 | dist2 = 0 | |
24 | ite = 1 | |
25 | pi2 = rep(0, k) | |
26 | ps = matrix(0, m,k) | |
27 | nY2 = matrix(0, m,k) | |
28 | ps1 = array(0, dim=c(n,m,k)) | |
29 | Gam = matrix(0, n,k) | |
30 | EPS = 1E-15 | |
31 | ||
32 | while(ite <= mini || (ite<= maxi && (dist>= tau || dist2 >= sqrt(tau)))) | |
33 | { | |
34 | Phi = phi | |
35 | Rho = rho | |
36 | Pi = pi | |
37 | ||
38 | #calcul associé à Y et X | |
39 | for(r in 1:k) | |
40 | { | |
41 | for (mm in 1:m) | |
42 | Y2[,mm,r] = sqrt(gam[,r]) * Y[,mm] | |
43 | for (i in 1:n) | |
44 | X2[i,,r] = sqrt(gam[i,r]) * X[i,] | |
45 | for (mm in 1:m) | |
46 | ps2[,mm,r] = crossprod(X2[,,r],Y2[,mm,r]) | |
47 | for (j in 1:p) | |
48 | { | |
49 | for (s in 1:p) | |
50 | Gram2[j,s,r] = crossprod(X2[,j,r], X2[,s,r]) | |
51 | } | |
52 | } | |
53 | ||
54 | ########## | |
55 | #Etape M # | |
56 | ########## | |
57 | ||
58 | #pour pi | |
59 | for (r in 1:k) | |
60 | b[r] = sum(abs(phi[,,r])) | |
61 | gam2 = colSums(gam) | |
62 | a = sum(gam %*% log(pi)) | |
63 | ||
64 | #tant que les props sont negatives | |
65 | kk = 0 | |
66 | pi2AllPositive = FALSE | |
67 | while (!pi2AllPositive) | |
68 | { | |
69 | pi2 = pi + 0.1^kk * ((1/n)*gam2 - pi) | |
70 | pi2AllPositive = all(pi2 >= 0) | |
71 | kk = kk+1 | |
72 | } | |
73 | ||
74 | #t(m) la plus grande valeur dans la grille O.1^k tel que ce soit décroissante ou constante | |
75 | while( kk < 1000 && -a/n + lambda * sum(pi^gamma * b) < | |
76 | -sum(gam2 * log(pi2))/n + lambda * sum(pi2^gamma * b) ) | |
77 | { | |
78 | pi2 = pi + 0.1^kk * (1/n*gam2 - pi) | |
79 | kk = kk + 1 | |
80 | } | |
81 | t = 0.1^kk | |
82 | pi = (pi + t*(pi2-pi)) / sum(pi + t*(pi2-pi)) | |
83 | ||
84 | #Pour phi et rho | |
85 | for (r in 1:k) | |
86 | { | |
87 | for (mm in 1:m) | |
88 | { | |
89 | for (i in 1:n) | |
90 | { | |
91 | ps1[i,mm,r] = Y2[i,mm,r] * sum(X2[i,,r] * phi[,mm,r]) | |
92 | } | |
93 | ps[mm,r] = sum(ps1[,mm,r]) | |
94 | nY2[mm,r] = sum(Y2[,mm,r]^2) | |
95 | rho[mm,mm,r] = (ps[mm,r]+sqrt(ps[mm,r]^2+4*nY2[mm,r]*gam2[r])) / (2*nY2[mm,r]) | |
96 | } | |
97 | } | |
98 | ||
99 | for (r in 1:k) | |
100 | { | |
101 | for (j in 1:p) | |
102 | { | |
103 | for (mm in 1:m) | |
104 | { | |
105 | S[j,mm,r] = -rho[mm,mm,r]*ps2[j,mm,r] + sum(phi[-j,mm,r] * Gram2[j,-j,r]) | |
106 | if (abs(S[j,mm,r]) <= n*lambda*(pi[r]^gamma)) | |
107 | phi[j,mm,r]=0 | |
108 | else if(S[j,mm,r] > n*lambda*(pi[r]^gamma)) | |
109 | phi[j,mm,r] = (n*lambda*(pi[r]^gamma)-S[j,mm,r]) / Gram2[j,j,r] | |
110 | else | |
111 | phi[j,mm,r] = -(n*lambda*(pi[r]^gamma)+S[j,mm,r]) / Gram2[j,j,r] | |
112 | } | |
113 | } | |
114 | } | |
115 | ||
116 | ########## | |
117 | #Etape E # | |
118 | ########## | |
119 | ||
120 | sumLogLLF2 = 0 | |
121 | for (i in 1:n) | |
122 | { | |
123 | #precompute sq norms to numerically adjust their values | |
124 | sqNorm2 = rep(0,k) | |
125 | for (r in 1:k) | |
126 | sqNorm2[r] = sum( (Y[i,]%*%rho[,,r]-X[i,]%*%phi[,,r])^2 ) | |
127 | ||
128 | #compute Gam[,] | |
129 | sumLLF1 = 0.0; | |
130 | for (r in 1:k) | |
131 | { | |
132 | Gam[i,r] = pi[r] * exp(-0.5*sqNorm2[r]) * det(rho[,,r]) | |
133 | sumLLF1 = sumLLF1 + Gam[i,r] / (2*base::pi)^(m/2) | |
134 | } | |
135 | sumLogLLF2 = sumLogLLF2 + log(sumLLF1) | |
136 | sumGamI = sum(Gam[i,]) | |
137 | if(sumGamI > EPS) | |
138 | gam[i,] = Gam[i,] / sumGamI | |
139 | else | |
140 | gam[i,] = rep(0,k) | |
141 | } | |
142 | ||
143 | sumPen = sum(pi^gamma * b) | |
144 | LLF[ite] = -sumLogLLF2/n + lambda*sumPen | |
145 | dist = ifelse( ite == 1, LLF[ite], (LLF[ite]-LLF[ite-1]) / (1+abs(LLF[ite])) ) | |
146 | Dist1 = max( (abs(phi-Phi)) / (1+abs(phi)) ) | |
147 | Dist2 = max( (abs(rho-Rho)) / (1+abs(rho)) ) | |
148 | Dist3 = max( (abs(pi-Pi)) / (1+abs(Pi)) ) | |
149 | dist2 = max(Dist1,Dist2,Dist3) | |
150 | ||
151 | ite = ite+1 | |
152 | } | |
153 | ||
154 | affec = apply(gam, 1, which.max) | |
155 | return(list("phi"=phi, "rho"=rho, "pi"=pi, "LLF"=LLF, "S"=S, "affec" = affec )) | |
156 | } |